Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; : 37028241257961, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853620

ABSTRACT

Raman spectroscopy allows for the unambiguous identification of materials through the inelastic scattering of light. This technique has a great many uses in various aspects of society from academic, scientific, and industry. This paper explores a specific type of Raman spectrometer called a spatial heterodyne Raman spectrometer (SHRSy), which is a variation of an interferometric spectrometer. It utilizes a Michelson interferometer and replaces the mirrors with gratings that transform it from a time-domain spectrometer to a spatial-domain spectrometer, allowing for the entirety of the spectrum to be captured at once. This study specifically tests a half-inch two-grating monolithic SHRS (½-in. 2g-mSHRS), which has a weight of <60 g and a size of 2.2 × 2.2 × 1.3 cm. To do this we excite a variety of organic liquids with a 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser, using an excitation energy of 6.5 mJ/pulse and distance of 3 m in conjunction with an intensified charge-coupled device camera. This is the first time that the SHRS has been used for investigating polarized Raman spectra of liquids. We discuss and contrast the instrumental properties such as resolution, spectral range, étendue, and field of view with previously tested mSHRS to give context to the instrument's performance.

2.
Appl Spectrosc ; 77(12): 1411-1423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801484

ABSTRACT

Spatial heterodyne Raman spectrometers (SHRSs) are modified forms of Michelson interferometers, except the mirrors in a Michelson interferometer are replaced with stationary diffraction gratings. This design removes the need for an entrance slit, as is the case in a dispersive spectrometer, and removes the need to scan the spectrum by using a moving mirror in a modern Michelson interferometer. In previous studies, various SHRS variants, such as free-standing two-grating SHRS, single-grating SHRS (1g-SHRS), monolithic SHRS (mSHRS), and single-grating mSHRS (1g-mSHRS), have been evaluated. However, the present study exclusively focuses on the 1g-mSHRS configuration. The 1g-mSHRS and 1g-SHRS increase the spectral range at fixed grating line density while trading off spectral resolution and resolving power. The mSHRS benefits from increased rigidity, lack of moving parts, and reduced footprint. In this study, we investigate how the choice of detector impacts the performance of the 1g-mSHRS system, with a specific focus on evaluating the performance of three types of cameras: charged-coupled device (CCD), intensified CCD (ICCD), and complementary metal-oxide-semiconductor (CMOS) cameras. These systems were evaluated using geological, organic, and inorganic samples using a 532 nm continuous wave laser for the CMOS and CCD cameras, and a 532 nm neodymium-doped yttrium aluminum garnet pulsed laser for the ICCD camera. The footprint of the 1g-mSHRS was 3.5 × 3.5 × 2.5 cm3 with a mass of 272 g or 80 g, depending on whether the monolith housing is included or not. We found that increasing the number of pixels utilized along the x-axis of the camera increases fringe visibility (FV) and optimizes the resolution (by capturing the entirety of the grating and magnifying the fringes). The number of pixels utilized in the y-axis, chip size, and dimensions, affect the signal-to-noise ratio of the systems. Additionally, we discuss the effect of pixel pitch on the recovery of Fizeau fringes, including the relationship between the Nyquist frequency, aliasing, and FV.

3.
Appl Spectrosc ; 77(5): 534-549, 2023 May.
Article in English | MEDLINE | ID: mdl-36223496

ABSTRACT

Advances in Raman instrumentation have led to the implementation of a remote dispersive Raman spectrometer on the Perseverance rover on Mars, which is used for remote sensing. For remote applications, dispersive spectrometers suffer from a few setbacks such as relatively larger sizes, low light throughput, limited spectral ranges, relatively low resolutions for small devices, and high sensitivity to misalignment. A spatial heterodyne Raman spectrometer (SHRS), which is a fixed grating interferometer, helps overcome some of these problems. Most SHRS devices that have been described use two fixed diffraction gratings, but a variance of the SHRS called the one-grating SHRS (1g-SHRS) replaces one of the gratings with a mirror, which makes it more compact. In a recent paper we described monolithic two-gratings SHRS, and in this paper, we investigate a single-grating monolithic SHRS (1g-mSHRS), which combines the 1g-SHRS with a monolithic setup previously tested at the University of South Carolina. This setup integrates the beamsplitter, grating, and mirror into a single monolithic device. This reduces the number of adjustable components, allows for easier alignment, and reduces the footprint of the device (35 × 35 × 25 mm with a weight of 80 g). This instrument provides a high spectral resolution (∼9 cm-1) and large spectral range (7327 cm-1) while decreasing the sensitivity to alignment with a field of view of 5.61 mm at 3m. We discuss the characteristics of the 1g-mSHRS by measuring the time-resolved remote Raman spectra of a few inorganic salts, organics, and minerals at 3 m. The 1g-mSHRS makes a good candidate for planetary exploration because of its large spectral range, greater sensitivity, competitively higher spectral resolution, low alignment sensitivity, and high light throughput in a compact easily aligned system with no moving parts.

4.
Bioorg Med Chem Lett ; 27(3): 636-641, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28007448

ABSTRACT

A variety of solid tumor cancers contain significant regions of hypoxia, which provide unique challenges for targeting by potent anticancer agents. Bioreductively activatable prodrug conjugates (BAPCs) represent a promising strategy for therapeutic intervention. BAPCs are designed to be biologically inert until they come into contact with low oxygen tension, at which point reductase enzyme mediated cleavage releases the parent anticancer agent in a tumor-specific manner. Phenstatin is a potent inhibitor of tubulin polymerization, mimicking the chemical structure and biological activity of the natural product combretastatin A-4. Synthetic approaches have been established for nitrobenzyl, nitroimidazole, nitrofuranyl, and nitrothienyl prodrugs of phenstatin incorporating nor-methyl, mono-methyl, and gem-dimethyl variants of the attached nitro compounds. A series of BAPCs based on phenstatin have been prepared by chemical synthesis and evaluated against the tubulin-microtubule protein system. In a preliminary study using anaerobic conditions, the gem-dimethyl nitrothiophene and gem-dimethyl nitrofuran analogues were shown to undergo efficient enzymatic cleavage in the presence of NADPH cytochrome P450 oxidoreductase. Each of the eleven BAPCs evaluated in this study demonstrated significantly reduced inhibitory activity against tubulin in comparison to the parent anti-cancer agent phenstatin (IC50=1.0µM). In fact, the majority of the BAPCs (seven of the eleven analogues) were not inhibitors of tubulin polymerization (IC50>20µM), which represents an anticipated (and desirable) attribute for these prodrugs, since they are intended to be biologically inactive prior to enzyme-mediated cleavage to release phenstatin.


Subject(s)
Benzophenones/chemistry , Benzophenones/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Tumor Hypoxia/drug effects , Benzophenones/metabolism , Humans , Inhibitory Concentration 50 , Prodrugs/metabolism , Protein Binding , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...