Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
BMC Pulm Med ; 23(1): 414, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904125

ABSTRACT

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition of somatic mutations that leads to an expanded blood cell clone, has been associated with development of a pro-inflammatory state. An enhanced or dysregulated inflammatory response may contribute to rejection after lung transplantation, however the prevalence of CHIP in lung recipients and influence of CHIP on allograft outcomes is unknown. METHODS: We analyzed whole-exome sequencing data in 279 lung recipients to detect CHIP, defined by pre-specified somatic mutations in 74 genes known to promote clonal expansion of hematopoietic stem cells. We compared the burden of acute rejection (AR) over the first post-transplant year in lung recipients with vs. without CHIP using multivariable ordinal regression. Multivariate Cox proportional hazards models were used to assess the association between CHIP and CLAD-free survival. An exploratory analysis evaluated the association between the number of CHIP-associated variants and chronic lung allograft dysfunction (CLAD)-free survival. RESULTS: We detected 64 CHIP-associated mutations in 45 individuals (15.7%), most commonly in TET2 (10.8%), DNMT3A (9.2%), and U2AF1 (9.2%). Patients with CHIP tended to be older but did not significantly differ from patients without CHIP in terms of race or native lung disease. Patients with CHIP did not have a higher incidence of AR over the first post-transplant year (p = 0.45) or a significantly increased risk of death or CLAD (adjusted HR 1.25, 95% CI 0.88-1.78). We did observe a significant association between the number of CHIP variants and CLAD-free survival, specifically patients with 2 or more CHIP-associated variants had an increased risk for death or CLAD (adjusted HR 3.79, 95% CI 1.98-7.27). CONCLUSIONS: Lung recipients have a higher prevalence of CHIP and a larger variety of genes with CHIP-associated mutations compared with previous reports for the general population. CHIP did not increase the risk of AR, CLAD, or death in lung recipients.


Subject(s)
Clonal Hematopoiesis , Lung Transplantation , Humans , Transplant Recipients , Prevalence , Lung , Lung Transplantation/adverse effects
2.
Chest ; 164(3): 670-681, 2023 09.
Article in English | MEDLINE | ID: mdl-37003354

ABSTRACT

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is the leading cause of death among lung transplant recipients. Eosinophils, effector cells of type 2 immunity, are implicated in the pathobiology of many lung diseases, and prior studies suggest their presence associates with acute rejection or CLAD after lung transplantation. RESEARCH QUESTION: Does histologic allograft injury or respiratory microbiology correlate with the presence of eosinophils in BAL fluid (BALF)? Does early posttransplant BALF eosinophilia associate with future CLAD development, including after adjustment for other known risk factors? STUDY DESIGN AND METHODS: We analyzed BALF cell count, microbiology, and biopsy data from a multicenter cohort of 531 lung recipients with 2,592 bronchoscopies over the first posttransplant year. Generalized estimating equation models were used to examine the correlation of allograft histology or BALF microbiology with the presence of BALF eosinophils. Multivariable Cox regression was used to determine the association between ≥ 1% BALF eosinophils in the first posttransplant year and definite CLAD. Expression of eosinophil-relevant genes was quantified in CLAD and transplant control tissues. RESULTS: The odds of BALF eosinophils being present was significantly higher at the time of acute rejection and nonrejection lung injury histologies and during pulmonary fungal detection. Early posttransplant ≥ 1% BALF eosinophils significantly and independently increased the risk for definite CLAD development (adjusted hazard ratio, 2.04; P = .009). Tissue expression of eotaxins, IL-13-related genes, and the epithelial-derived cytokines IL-33 and thymic stromal lymphoprotein were significantly increased in CLAD. INTERPRETATION: BALF eosinophilia was an independent predictor of future CLAD risk across a multicenter lung recipient cohort. Additionally, type 2 inflammatory signals were induced in established CLAD. These data underscore the need for mechanistic and clinical studies to clarify the role of type 2 pathway-specific interventions in CLAD prevention or treatment.


Subject(s)
Eosinophilia , Lung Transplantation , Humans , Bronchoalveolar Lavage Fluid , Lung , Transplantation, Homologous , Lung Transplantation/adverse effects , Allografts , Eosinophilia/etiology , Retrospective Studies , Graft Rejection
3.
J Heart Lung Transplant ; 42(6): 741-749, 2023 06.
Article in English | MEDLINE | ID: mdl-36941179

ABSTRACT

BACKGROUND: Chronic lung allograft dysfunction (CLAD) increases morbidity and mortality for lung transplant recipients. Club cell secretory protein (CCSP), produced by airway club cells, is reduced in the bronchoalveolar lavage fluid (BALF) of lung recipients with CLAD. We sought to understand the relationship between BALF CCSP and early posttransplant allograft injury and determine if early posttransplant BALF CCSP reductions indicate later CLAD risk. METHODS: We quantified CCSP and total protein in 1606 BALF samples collected over the first posttransplant year from 392 adult lung recipients at 5 centers. Generalized estimating equation models were used to examine the correlation of allograft histology or infection events with protein-normalized BALF CCSP. We performed multivariable Cox regression to determine the association between a time-dependent binary indicator of normalized BALF CCSP level below the median in the first posttransplant year and development of probable CLAD. RESULTS: Normalized BALF CCSP concentrations were 19% to 48% lower among samples corresponding to histological allograft injury as compared with healthy samples. Patients who experienced any occurrence of a normalized BALF CCSP level below the median over the first posttransplant year had a significant increase in probable CLAD risk independent of other factors previously linked to CLAD (adjusted hazard ratio 1.95; p = 0.035). CONCLUSIONS: We discovered a threshold for reduced BALF CCSP to discriminate future CLAD risk; supporting the utility of BALF CCSP as a tool for early posttransplant risk stratification. Additionally, our finding that low CCSP associates with future CLAD underscores a role for club cell injury in CLAD pathobiology.


Subject(s)
Lung Transplantation , Adult , Humans , Lung Transplantation/adverse effects , Biomarkers/metabolism , Lung , Bronchoalveolar Lavage Fluid , Allografts , Retrospective Studies
4.
Cell Death Discov ; 8(1): 64, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35169120

ABSTRACT

Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA's impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.

5.
iScience ; 24(12): 103412, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34786537

ABSTRACT

Currently available SARS-CoV-2 therapeutics are targeted toward moderately to severely ill patients and require intravenous infusions, with limited options for exposed or infected patients with no or mild symptoms. Although vaccines have demonstrated protective efficacy, vaccine hesitancy and logistical distribution challenges will delay their ability to end the pandemic. Hence, there is a need for rapidly translatable, easy-to-administer-therapeutics that can prevent SARS-CoV-2 disease progression, when administered in the early stages of infection. We demonstrate that an orally bioavailable Hsp90 inhibitor, SNX-5422, currently in clinical trials as an anti-cancer therapeutic, inhibits SARS-CoV-2 replication in vitro at a high selectivity index. SNX-5422 treatment of human primary airway epithelial cells dampened expression of inflammatory pathways previously associated with poor SARS-CoV-2 disease outcomes. In addition, SNX-5422 interrupted expression of host factors demonstrated to be crucial for SARS-CoV-2 replication. Development of SNX-5422 as SARS-CoV-2-early-therapy will dampen disease severity, resulting in better clinical outcomes and reduced hospitalizations.

6.
Transplant Direct ; 7(4): e685, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34549083

ABSTRACT

BACKGROUND: Acute perivascular rejection (AR) is common in lung recipients and increases the risk for chronic lung allograft dysfunction (CLAD). Hyaluronan (HA), an extracellular matrix constituent, accumulates in experimental AR and can act as an innate immune agonist, breaking tolerance and potentiating alloimmunity. We previously demonstrated HA accumulates in CLAD after human-lung transplantation. We sought to determine if HA accumulates in the bronchoalveolar lavage fluid (BALF) concurrent with AR in lung recipients. METHODS: The cohort consisted of 126 first adult lung recipients at 5 transplant centers with a total of 373 BALF samples collected within the first posttransplant year. All samples were paired with a lung biopsy from the same bronchoscopy. BALF HA (ng/mL) was quantified by ELISA and log-transformed for analysis. Linear-mixed effect models, adjusted for potential confounders, were used to estimate the association between BALF HA concentration and the presence of AR on biopsy. The association between early posttransplant BALF HA levels and the development of CLAD was explored utilizing tertiles of maximum BALF HA level observed within the first 6 months of transplant. RESULTS: In analyses adjusted for potential confounders, BALF HA concentration was significantly increased in association with AR (change in means on log-scale 0.31; 95% CI, 0.01-0.60; P = 0.044). When considered on the original scale (ng/mL), BALF HA concentrations were 1.36 times (36%) higher, on average, among samples with, versus without, AR. The cumulative incidence of CLAD was numerically higher in individuals in the highest tertiles of BALF HA level within the first 6 months after transplant, as compared with those in the lowest tertile; however, this difference was not statistically significant (P = 0.32). CONCLUSIONS: These results demonstrate accumulation of HA in clinical AR and suggest a mechanism by which innate and adaptive immune activation might interact in the development of AR and CLAD.

7.
Transplantation ; 103(11): 2264-2274, 2019 11.
Article in English | MEDLINE | ID: mdl-31658231

ABSTRACT

BACKGROUND: Chronic pulmonary graft-versus-host disease (cpGVHD) after hematopoietic cell transplant (HCT) manifests as progressive airway and parenchymal lung fibrosis. On the basis of our prior data, mice that undergo allogeneic HCT with Tbet-knockout donors (AlloTbet) have increased lung Th17 cells and IL-17A and develop fibrosis resembling human cpGVHD. The role of IL-17A in posttransplant pulmonary fibrosis remains incompletely understood. We hypothesized that IL-17A is necessary for development of murine cpGVHD in this model. METHODS: AlloTbet mice received weekly intraperitoneal anti-IL-17A or IgG (200 µg/mouse) starting 2 weeks post-HCT and were sacrificed after week 5. Histologic airway and parenchymal fibrosis were semiquantitatively graded in a blinded fashion. Lung cells and proteins were measured by flow cytometry, ELISA, and multicytokine assays. RESULTS: Anti-IL-17A modestly decreased airway and parenchymal lung fibrosis, along with a striking reduction in pulmonary neutrophilia, IL-6, MIP-1α, MIP-1ß, CXCL1, and CXCL5 in AlloTbet mice. Additionally, anti-IL-17A decreased CCL2, inflammatory monocytes and macrophages, and Th17 cells. CONCLUSIONS: In the setting of murine AlloHCT with Tbet donors, IL-17A blockade decreases fibrotic features of cpGVHD. This may be mediated by the observed reduction in neutrophils or specific lung monocyte and macrophage populations or alternatively via a direct effect on fibroblasts. Collectively, our results further suggest that anti-IL-17A strategies could prove useful in preventing alloimmune-driven fibrotic lung diseases.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interleukin-17/antagonists & inhibitors , Lung/immunology , Pulmonary Fibrosis/physiopathology , Animals , Chemokine CCL2/blood , Chemokine CCL3/blood , Chemokine CCL4/blood , Chemokine CXCL1/blood , Chemokine CXCL5/blood , Chronic Disease , Graft vs Host Disease/pathology , Inflammation , Interleukin-17/immunology , Interleukin-6/blood , Lung/physiopathology , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology
8.
Toxicol Sci ; 169(2): 534-542, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30851105

ABSTRACT

2,3-Butanedione (DA), a component of artificial butter flavoring, is associated with the development of occupational bronchiolitis obliterans (BO), a disease of progressive airway fibrosis resulting in lung function decline. Neutrophilic airway inflammation is a consistent feature of BO across a range of clinical contexts and may contribute to disease pathogenesis. Therefore, we sought to determine the importance of the neutrophil chemotactic cytokine interleukin-8 (IL-8) in DA-induced lung disease using in vivo and in vitro model systems. First, we demonstrated that levels of Cinc-1, the rat homolog of IL-8, are increased in the lung fluid and tissue compartment in a rat model of DA-induced BO. Next, we demonstrated that DA increased IL-8 production by the pulmonary epithelial cell line NCI-H292 and by primary human airway epithelial cells grown under physiologically relevant conditions at an air-liquid interface. We then tested the hypothesis that DA-induced epithelial IL-8 protein occurs in an epidermal growth factor receptor (EGFR)-dependent manner. In these in vitro experiments we demonstrated that epithelial IL-8 protein is blocked by the EGFR tyrosine kinase inhibitor AG1478 and by inhibition of tumor necrosis factor-alpha converting enzyme using the small molecule inhibitor, TAPI-1. Finally, we demonstrated that DA-induced IL-8 is dependent upon ERK1/2 and Mitogen activated protein kinase kinase activation downstream of EGFR signaling using the small molecule inhibitors AG1478 and PD98059. Together these novel in vivo and in vitro observations support that EGFR-dependent IL-8 production occurs in DA-induced BO. Further studies are warranted to determine the importance of IL-8 in BO pathogenesis.


Subject(s)
Bronchiolitis Obliterans/chemically induced , Diacetyl/toxicity , ErbB Receptors/physiology , Flavoring Agents/toxicity , Interleukin-8/biosynthesis , Lung/drug effects , Animals , Epithelial Cells/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Lung/immunology , Rats
9.
J Clin Invest ; 129(2): 556-568, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30561386

ABSTRACT

Antibody-mediated rejection (AMR) is a principal cause of acute and chronic failure of lung allografts. However, mechanisms mediating this oftentimes fatal complication are poorly understood. Here, we show that Foxp3+ T cells formed aggregates in rejection-free human lung grafts and accumulated within induced bronchus-associated lymphoid tissue (BALT) of tolerant mouse lungs. Using a retransplantation model, we show that selective depletion of graft-resident Foxp3+ T lymphocytes resulted in the generation of donor-specific antibodies (DSA) and AMR, which was associated with complement deposition and destruction of airway epithelium. AMR was dependent on graft infiltration by B and T cells. Depletion of graft-resident Foxp3+ T lymphocytes resulted in prolonged interactions between B and CD4+ T cells within transplanted lungs, which was dependent on CXCR5-CXCL13. Blockade of CXCL13 as well as inhibition of the CD40 ligand and the ICOS ligand suppressed DSA production and prevented AMR. Thus, we have shown that regulatory Foxp3+ T cells residing within BALT of tolerant pulmonary allografts function to suppress B cell activation, a finding that challenges the prevailing view that regulation of humoral responses occurs peripherally. As pulmonary AMR is largely refractory to current immunosuppression, our findings provide a platform for developing therapies that target local immune responses.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , B-Lymphocytes , Bronchi , Graft Rejection , Lung Transplantation , Lymphocyte Activation , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Bronchi/immunology , Bronchi/pathology , CD40 Ligand/genetics , CD40 Ligand/immunology , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Graft Rejection/genetics , Graft Rejection/immunology , Graft Rejection/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Receptors, CXCR5/genetics , Receptors, CXCR5/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
10.
Am J Respir Cell Mol Biol ; 56(6): 784-795, 2017 06.
Article in English | MEDLINE | ID: mdl-28248570

ABSTRACT

Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.


Subject(s)
Diacetyl/toxicity , Epithelial Cells/metabolism , Flavoring Agents/toxicity , Lung Diseases/metabolism , Proteome/metabolism , Cell Differentiation/drug effects , ErbB Receptors/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Lung/drug effects , Lung/pathology , Lung Diseases/pathology , Proteomics , Signal Transduction/drug effects
11.
J Proteome Res ; 16(2): 538-549, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27966365

ABSTRACT

Occupational exposures to the diketone flavoring agent, diacetyl, have been associated with bronchiolitis obliterans, a rare condition of airway fibrosis. Model studies in rodents have suggested that the airway epithelium is a major site of diacetyl toxicity, but the effects of diacetyl exposure upon the human airway epithelium are poorly characterized. Here we performed quantitative LC-MS/MS-based proteomics to study the effects of repeated diacetyl vapor exposures on 3D organotypic cultures of human primary tracheobronchial epithelial cells. Using a label-free approach, we quantified approximately 3400 proteins and 5700 phosphopeptides in cell lysates across four independent donors. Altered expression of proteins and phosphopeptides were suggestive of loss of cilia and increased squamous differentiation in diacetyl-exposed cells. These phenomena were confirmed by immunofluorescence staining of culture cross sections. Hyperphosphorylation and cross-linking of basal cell keratins were also observed in diacetyl-treated cells, and we used parallel reaction monitoring to confidently localize and quantify previously uncharacterized sites of phosphorylation in keratin 6. Collectively, these data identify numerous molecular changes in the epithelium that may be important to the pathogenesis of flavoring-induced bronchiolitis obliterans. More generally, this study highlights the utility of quantitative proteomics for the study of in vitro models of airway injury and disease.


Subject(s)
Diacetyl/toxicity , Epithelial Cells/drug effects , Flavoring Agents/toxicity , Gene Expression Regulation/drug effects , Proteome/genetics , Adolescent , Cell Culture Techniques , Cell Differentiation , Cilia/drug effects , Cilia/metabolism , Cilia/ultrastructure , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Ontology , Humans , Keratin-6/chemistry , Keratin-6/genetics , Keratin-6/metabolism , Male , Middle Aged , Molecular Sequence Annotation , Phosphorylation/drug effects , Primary Cell Culture , Proteome/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Volatilization , Young Adult
12.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Article in English | MEDLINE | ID: mdl-27643531

ABSTRACT

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Subject(s)
Diacetyl/adverse effects , Flavoring Agents/adverse effects , Lung Diseases/etiology , Sequestosome-1 Protein/metabolism , Sugar Alcohol Dehydrogenases/genetics , Ubiquitin/metabolism , Animals , Autophagy , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Inhalation Exposure , Lung Diseases/chemically induced , Lung Diseases/metabolism , Lung Diseases/pathology , Lysosomal Membrane Proteins/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Marker Protein/genetics , Olfactory Marker Protein/metabolism , Respiratory System/metabolism , Respiratory System/pathology , Sequestosome-1 Protein/genetics , Sugar Alcohol Dehydrogenases/metabolism
13.
PLoS One ; 10(2): e0118459, 2015.
Article in English | MEDLINE | ID: mdl-25710175

ABSTRACT

Obliterative bronchiolitis (OB) is an irreversible lung disease characterized by progressive fibrosis in the small airways with eventual occlusion of the airway lumens. OB is most commonly associated with lung transplant rejection; however, OB has also been diagnosed in workers exposed to artificial butter flavoring (ABF) vapors. Research has been limited by the lack of an adequate animal model of OB, and as a result the mechanism(s) is unclear and there are no effective treatments for this condition. Exposure of rats to the ABF component, 2,3-pentanedione (PD) results in airway lesions that are histopathologically similar to those in human OB. We used this animal model to evaluate changes in gene expression in the distal bronchi of rats with PD-induced OB. Male Wistar Han rats were exposed to 200 ppm PD or air 6 h/d, 5 d/wk for 2-wks. Bronchial tissues were laser microdissected from serial sections of frozen lung. In exposed lungs, both fibrotic and non-fibrotic airways were collected. Following RNA extraction and microarray analysis, differential gene expression was evaluated. In non-fibrotic bronchi of exposed rats, 4683 genes were significantly altered relative to air-exposed controls with notable down-regulation of many inflammatory cytokines and chemokines. In contrast, in fibrotic bronchi, 3807 genes were significantly altered with a majority of genes being up-regulated in affected pathways. Tgf-ß2 and downstream genes implicated in fibrosis were significantly up-regulated in fibrotic lesions. Genes for collagens and extracellular matrix proteins were highly up-regulated. In addition, expression of genes for peptidases and peptidase inhibitors were significantly altered, indicative of the tissue remodeling that occurs during airway fibrosis. Our data provide new insights into the molecular mechanisms of OB. This new information is of potential significance with regard to future therapeutic targets for treatment.


Subject(s)
Bronchi/metabolism , Bronchiolitis Obliterans/pathology , Down-Regulation/drug effects , Pentanones/toxicity , Up-Regulation/drug effects , Animals , Bronchi/pathology , Bronchiolitis Obliterans/chemically induced , Bronchiolitis Obliterans/genetics , Disease Models, Animal , Fibrosis/pathology , Immunohistochemistry , Inhalation Exposure , Male , Principal Component Analysis , RNA/isolation & purification , RNA/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism
14.
Transpl Immunol ; 32(1): 51-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446809

ABSTRACT

RATIONALE: Bone marrow transplant (BMT) recipients experience frequent and severe respiratory viral infections (RVIs). However, the immunological mechanisms predisposing to RVIs are uncertain. Therefore, we hypothesized that antiviral T cell immunity is impaired as a consequence of allogeneic BMT, independent of pharmacologic immunosuppression, and is responsible for increased susceptibility to RVI. METHODS: Bone marrow and splenocytes from C57BL/6(H2(b)) mice were transplanted into B10.BR(H2(k)) (Allo) or C57BL/6(H2(b)) (Syn) recipients. Five weeks after transplantation, recipient mice were inoculated intranasally with mouse parainfluenza virus type 1 (mPIV-1), commonly known as Sendai virus (SeV), and monitored for relevant immunological and disease endpoints. MAIN RESULTS: Severe and persistent airway inflammation, epithelial injury, and enhanced mortality are found after viral infection in Allo mice but not in control Syn and non-transplanted mice. In addition, viral clearance is delayed in Allo mice as evidenced by prolonged detection of viral transcripts at Day 15 post-inoculation (p.i.) but not in control mice. In concert with these events, we also detected decreased levels of total and virus-specific CD8(+) T cells, as well as increased T cellexpression of inhibitory receptor programmed death-1 (PD-1), in the lungs of Allo mice at Day 8 p.i. Adoptive transfer of CD8(+) T cells from non-transplanted mice recovered from SeV infection into Allo mice at Day 8 p.i. restored normal levels of viral clearance, epithelial repair, and lung inflammation. CONCLUSIONS: Taken together these results indicate that allogeneic BMT results in more severe RVI based on the failure to develop an appropriate pulmonary CD8(+) T cell response, providing an important potential mechanism to target in improving outcomes of RVI after BMT.


Subject(s)
Bone Marrow Transplantation , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Respiratory Tract Infections/immunology , Respirovirus Infections/immunology , Sendai virus/immunology , Adoptive Transfer , Allografts , Animals , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/transplantation , Male , Mice , Respiratory Tract Infections/etiology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/therapy , Respirovirus Infections/etiology , Respirovirus Infections/pathology , Respirovirus Infections/therapy
15.
Am J Respir Cell Mol Biol ; 51(6): 810-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24921973

ABSTRACT

Environmental exposures are a potential trigger of chronic pulmonary graft-versus-host disease (pGVHD) after successful recovery from hematopoietic cell transplant (HCT). We hypothesized that inhalations of LPS, a prototypic environmental stimulus, trigger pGVHD via increased pulmonary recruitment of donor-derived antigen-presenting cells (APCs) through the C-C motif ligand 2 (CCL2)-C-C motif receptor 2 (CCR2) chemokine axis. B10.BR(H2(k)) and C57BL/6(H2(b)) mice underwent allogeneic (Allo) or syngeneic (Syn) HCT with wild-type (WT) C57BL/6, CCL2(-/-), or CCR2(-/-) donors. After 4 weeks, recipient mice received daily inhaled LPS for 5 days and were killed at multiple time points. Allo mice exposed to repeated inhaled LPS developed prominent lymphocytic bronchiolitis, similar to human pGVHD. The increase in pulmonary T cells in Allo mice after LPS exposures was accompanied by increased CCL2, CCR2, and Type-1 T-helper cytokines as well as by monocytes and monocyte-derived dendritic cells (moDCs) compared with Syn and nontransplanted controls. Using CCL2(-/-) donors leads to a significant decrease in lung DCs but to only mildly reduced CD4 T cells. Using CCR2(-/-) donors significantly reduces lung DCs and moDCs but does not change T cells. CCL2 or CCR2 deficiency does not alter pGVHD pathology but increases airway hyperreactivity and IL-5 or IL-13 cytokines. Our results show that hematopoietic donor-derived CCL2 and CCR2 regulate recruitment of APCs to the Allo lung after LPS exposure. Although they do not alter pathologic pGVHD, their absence is associated with increased airway hyperreactivity and IL-5 and IL-13 cytokines. These results suggest that the APC changes that result from CCL2-CCR2 blockade may have unexpected effects on T cell differentiation and physiologic outcomes in HCT.


Subject(s)
Chemokine CCL2/physiology , Graft vs Host Disease/immunology , Lipopolysaccharides/pharmacology , Receptors, CCR2/physiology , Animals , Cell Differentiation/immunology , Cells, Cultured , Coculture Techniques , Dendritic Cells/immunology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Interleukin-5/biosynthesis , Lung/immunology , Lung/pathology , Male , Mice, Inbred C57BL , T-Lymphocytes/immunology
16.
Am J Respir Cell Mol Biol ; 51(4): 568-74, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24816162

ABSTRACT

Diacetyl (DA), a component of artificial butter flavoring, has been linked to the development of bronchiolitis obliterans (BO), a disease of airway epithelial injury and airway fibrosis. The epidermal growth factor receptor ligand, amphiregulin (AREG), has been implicated in other types of epithelial injury and lung fibrosis. We investigated the effects of DA directly on the pulmonary epithelium, and we hypothesized that DA exposure would result in epithelial cell shedding of AREG. Consistent with this hypothesis, we demonstrate that DA increases AREG by the pulmonary epithelial cell line NCI-H292 and by multiple independent primary human airway epithelial donors grown under physiologically relevant conditions at the air-liquid interface. Furthermore, we demonstrate that AREG shedding occurs through a TNF-α-converting enzyme (TACE)-dependent mechanism via inhibition of TACE activity in epithelial cells using the small molecule inhibitor, TNF-α protease inhibitor-1, as well as TACE-specific small inhibitor RNA. Finally, we demonstrate supportive in vivo results showing increased AREG transcript and protein levels in the lungs of rodents with DA-induced BO. In summary, our novel in vitro and in vivo observations suggest that further study of AREG is warranted in the pathogenesis of DA-induced BO.


Subject(s)
Bronchiolitis Obliterans/chemically induced , Diacetyl/toxicity , EGF Family of Proteins/metabolism , Epithelial Cells/drug effects , Flavoring Agents/toxicity , Respiratory Mucosa/drug effects , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Amphiregulin , Bronchiolitis Obliterans/genetics , Bronchiolitis Obliterans/metabolism , Cell Line , Dose-Response Relationship, Drug , EGF Family of Proteins/genetics , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA Interference , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Time Factors , Transfection , Up-Regulation
17.
PLoS One ; 9(5): e97951, 2014.
Article in English | MEDLINE | ID: mdl-24844383

ABSTRACT

BACKGROUND: Pulmonary GVHD (pGVHD) is an important complication of hematopoietic cell transplant (HCT) and is thought to be a consequence of the HCT conditioning regimen, allogeneic donor cells, and posttransplant lung exposures. We have previously demonstrated that serial inhaled lipopolysaccharide (LPS) exposures potentiate the development of pGVHD after murine allogeneic HCT. In the current study we hypothesized that allogeneic lymphocytes and environmental exposures alone, in the absence of a pre-conditioning regimen, would cause features of pGVHD and would lead to a different T cell expansion pattern compared to syngeneic cells. METHODS: Recipient Rag1-/- mice received a transfer of allogeneic (Allo) or syngeneic (Syn) spleen cells. After 1 week of immune reconstitution, mice received 5 daily inhaled LPS exposures and were sacrificed 72 hours after the last LPS exposure. Lung physiology, histology, and protein levels in bronchoalveolar lavage (BAL) were assessed. Lung cells were analyzed by flow cytometry. RESULTS: Both Allo and Syn mice that undergo LPS exposures (AlloLPS and SynLPS) have prominent lymphocytic inflammation in their lungs, resembling pGVHD pathology, not seen in LPS-unexposed or non-transplanted controls. Compared to SynLPS, however, AlloLPS have significantly increased levels of BAL protein and enhancement of airway hyperreactivity, consistent with more severe lung injury. This injury in AlloLPS mice is associated with an increase in CD8 T cells and effector CD4 T cells, as well as a decrease in regulatory to effector CD4 T cell ratio. Additionally, cytokine analysis is consistent with a preferential Th1 differentiation and upregulation of pulmonary CCL5 and granzyme B. CONCLUSIONS: Allogeneic lymphocyte transfer into lymphocyte-deficient mice, followed by LPS exposures, causes features of pGVHD and lung injury in the absence of a pre-conditioning HCT regimen. This lung disease associated with an expansion of allogeneic effector T cells provides a novel model to dissect mechanisms of pGVHD independent of conditioning.


Subject(s)
Adoptive Transfer , Lipopolysaccharides/immunology , Lung Injury/etiology , Lung Injury/therapy , Spleen/cytology , T-Lymphocyte Subsets/immunology , Administration, Inhalation , Animals , Chemokine CCL5/metabolism , Disease Models, Animal , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Granzymes/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Immunophenotyping , Interferon-gamma/metabolism , Lipopolysaccharides/administration & dosage , Lung Injury/pathology , Male , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , T-Lymphocyte Subsets/metabolism , Transplantation, Homologous
18.
J Thromb Thrombolysis ; 36(4): 375-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23700090

ABSTRACT

Erythropoietin (EPO) was hypothesized to mitigate reperfusion injury, in part via mobilization of endothelial progenitor cells (EPCs). The REVEAL trial found no reduction in infarct size with a single dose of EPO (60,000 U) in patients with ST-segment elevation myocardial infarction. In a substudy, we aimed to determine the feasibility of cryopreserving and centrally analyzing EPC levels to assess the relationship between EPC numbers, EPO administration, and infarct size. As a prespecified substudy, mononuclear cells were locally cryopreserved before as well as 24 and 48-72 h after primary percutaneous coronary intervention. EPC samples were collected in 163 of 222 enrolled patients. At least one sample was obtained from 125 patients, and all three time points were available in 83 patients. There were no significant differences in the absolute EPC numbers over time or between EPO- and placebo-treated patients; however, there was a trend toward a greater increase in EPC levels from 24 to 48-72 h postintervention in patients receiving ≥30,000 U of EPO (P = 0.099 for CD133(+) cells, 0.049 for CD34(+) cells, 0.099 for ALDH(br) cells). EPC numbers at baseline were inversely related to infarct size (P = 0.03 for CD133(+) cells, 0.006 for CD34(+) cells). Local whole cell cryopreservation and central EPC analysis in the context of a multicenter randomized trial is feasible but challenging. High-dose (≥30,000 U) EPO may mobilize EPCs at 48-72 h, and baseline EPC levels may be inversely associated with infarct size.


Subject(s)
Endothelial Cells/metabolism , Erythropoietin/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Myocardial Infarction/blood , Myocardial Infarction/drug therapy , Stem Cells/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Leukocyte Count , Leukocytes, Mononuclear/metabolism , Male , Middle Aged
19.
Am J Respir Cell Mol Biol ; 46(5): 592-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22162905

ABSTRACT

Chemokines and chemokine receptors have been implicated in the pathogenesis of bronchiolitis. CXCR3 ligands (CXCL10, CXCL9, and CXCL11) were elevated in patients with bronchiolitis obliterans syndrome (BOS) and chronic allorejection. Studies also suggested that blockage of CXCR3 or its ligands changed the outcome of T-cell recruitment and airway obliteration. We wanted to determine the role of the chemokine CXCL10 in the pathogenesis of bronchiolitis and BOS. In this study, we found that CXCL10 mRNA levels were significantly increased in patients with BOS. We generated transgenic mice expressing a mouse CXCL10 cDNA under control of the rat CC10 promoter. Six-month-old CC10-CXCL10 transgenic mice developed bronchiolitis characterized by airway epithelial hyperplasia and developed peribronchiolar and perivascular lymphocyte infiltration. The airway hyperplasia and T-cell inflammation were dependent on the presence of CXCR3. Therefore, long-term exposure of the chemokine CXCL10 in the lung causes bronchiolitis-like inflammation in mice.


Subject(s)
Bronchiolitis/physiopathology , Chemokine CXCL10/physiology , Animals , Base Sequence , Bronchoalveolar Lavage Fluid , Chemokine CXCL10/genetics , DNA Primers , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunohistochemistry , Mice , Mice, Transgenic , Polymerase Chain Reaction , RNA, Messenger/genetics
20.
J Heart Lung Transplant ; 30(6): 717-25, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21444213

ABSTRACT

BACKGROUND: Pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplant (HCT) and allograft rejection after lung transplant are parallel immunologic processes that lead to significant morbidity and mortality. Our murine model of pulmonary GVHD after inhaled lipopolysaccharide (LPS) suggests that innate immune activation potentiates pulmonary transplant-related alloimmunity. We hypothesized that the chemokine (C-X-C motif) receptor 3 (CXCR3) receptor is necessary for the development of LPS-induced pulmonary GVHD. METHODS: Recipient mice underwent allogeneic or syngeneic HCT, followed by inhaled LPS. CXCR3 inhibition was performed by using CXCR3-knockout donors or by systemic anti-CXCR3 antibody blockade. Pulmonary histopathology, cellular sub-populations, cytokine proteins, and transcripts were analyzed. RESULTS: Compared with the lungs of LPS-unexposed and syngeneic controls, lungs of LPS-exposed allogeneic HCT mice demonstrated prominent lymphocytic peri-vascular and peri-bronchiolar infiltrates. This pathology was associated with increased CD4(+) and CD8(+) T cells as well as an increase in CXCR3 expression on T cells, a 2-fold upregulation of CXCR3 transcript, and a 4-fold increase in its ligand CXCL10/Interferon gamma-induced protein 10 kDa (IP-10). CXCR3 inhibition using gene-knockout strategy or antibody blockade did not change the severity of pulmonary pathology, with a mean pathology score of 6.5 for sufficient vs 6.5 for knockout (p = 1.00) and a mean score of 6.8 for antibody blockade vs 7.4 for control (p = 0.46). CXCR3 inhibition did not prevent CD3 infiltration or prevent production of interleukin-12p40 or significantly change other Th1, Th2, or Th17 cytokines in the lung. CONCLUSIONS: In the setting of allogeneic HCT, innate immune activation by LPS potentiates pulmonary GVHD through CXCR3-independent mechanisms. Clinical strategies focused on inhibition of CXCR3 may prove insufficient to ameliorate transplant-related lung disease.


Subject(s)
Graft vs Host Disease/pathology , Immunity, Innate/immunology , Lung Diseases/pathology , Lung Transplantation/immunology , Receptors, CXCR3/physiology , Animals , Disease Models, Animal , Graft vs Host Disease/chemically induced , Hematopoietic Stem Cell Transplantation , Lipopolysaccharides , Lung Diseases/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...