Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell Mol Bioeng ; 17(2): 121-135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737451

ABSTRACT

Purpose: Glioblastoma (GBM) is an aggressive malignant brain tumor with 2 year survival rates of 6.7% (Stupp et al. in J Clin Oncol Off J Am Soc Clin Oncol 25:4127-4136, 2007; Mohammed et al. in Rep Pract Oncol Radiother 27:1026-1036, 2002). One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue (Lefranc et al. in J Clin Oncol Off J Am Soc Clin Oncol 23:2411-2422, 2005; Hoelzinger et al. in J Natl Cancer Inst 21:1583-1593, 2007). To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Several models of cell migration have been proposed, including the motor-clutch, bleb-based motility, and osmotic engine models. Methods: Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Results: We found that nearly all cell-vasculature interactions reflected pulling, rather than pushing, on vasculature at the cell leading edge, a finding consistent with a motor-clutch mode of migration, and inconsistent with an osmotic engine model or confined bleb-based migration. Reducing myosin motor activity, a key component in the motor-clutch model, was found to decrease migration speed at high doses for all cell types including U251 and 6 low-passage patient-derived xenograft lines (3 proneural and 3 mesenchymal subtypes). Variable responses were found at low doses, consistent with a motor-clutch mode of migration which predicts a biphasic relationship between migration speed and motor-to-clutch ratio. Targeting of molecular clutches including integrins and CD44 slowed migration of U251 cells. Conclusions: Overall we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00799-x.

2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Signal Transduction
3.
Nat Cancer ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443662

ABSTRACT

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized breast cancer therapy. However, <50% of patients have an objective response, and nearly all patients develop resistance during therapy. To elucidate the underlying mechanisms, we constructed an interpretable deep learning model of the response to palbociclib, a CDK4/6i, based on a reference map of multiprotein assemblies in cancer. The model identifies eight core assemblies that integrate rare and common alterations across 90 genes to stratify palbociclib-sensitive versus palbociclib-resistant cell lines. Predictions translate to patients and patient-derived xenografts, whereas single-gene biomarkers do not. Most predictive assemblies can be shown by CRISPR-Cas9 genetic disruption to regulate the CDK4/6i response. Validated assemblies relate to cell-cycle control, growth factor signaling and a histone regulatory complex that we show promotes S-phase entry through the activation of the histone modifiers KAT6A and TBL1XR1 and the transcription factor RUNX1. This study enables an integrated assessment of how a tumor's genetic profile modulates CDK4/6i resistance.

4.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961475

ABSTRACT

Glioblastoma (GBM) is an aggressive malignant brain tumor with 2-year survival rates of 6.7% [1], [2]. One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue[3], [4]. To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration. Through imaging cell-vasculature interactions and utilizing drugs, antibodies, and genetic modifications to target motors and clutches, we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.

5.
Nat Commun ; 14(1): 3966, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407562

ABSTRACT

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Subject(s)
Adenocarcinoma of Lung , CCAAT-Enhancer-Binding Proteins , Lung Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , DNA Methylation , Epigenesis, Genetic , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Cell Syst ; 14(6): 447-463.e8, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37220749

ABSTRACT

The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).


Subject(s)
Chromatin , DNA Repair , DNA Repair/genetics , Chromatin/genetics , DNA Damage/genetics
7.
Nat Commun ; 14(1): 2468, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117218

ABSTRACT

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.


Subject(s)
Mechanical Phenomena , Proteins , DNA Probes , Cell Physiological Phenomena , DNA
8.
Nat Cell Biol ; 25(1): 159-169, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36635501

ABSTRACT

Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Transformation, Neoplastic/metabolism , Signal Transduction/genetics , Lung Neoplasms/genetics , Genes, ras , Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
9.
Cancer Immunol Res ; 10(10): 1190-1209, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35895745

ABSTRACT

Assessment of immune-cell subsets within the tumor immune microenvironment is a powerful approach to better understand cancer immunotherapy responses. However, the use of biopsies to assess the tumor immune microenvironment poses challenges, including the potential for sampling error, restricted sampling over time, and inaccessibility of some tissues/organs, as well as the fact that single biopsy analyses do not reflect discordance across multiple intrapatient tumor lesions. Immuno-positron emission tomography (PET) presents a promising translational imaging approach to address the limitations and assess changes in the tumor microenvironment. We have developed 89Zr-DFO-REGN5054, a fully human CD8A-specific antibody conjugate, to assess CD8+ tumor-infiltrating lymphocytes (TIL) pre- and posttherapy. We used multiple assays, including in vitro T-cell activation, proliferation, and cytokine production, and in vivo viral clearance and CD8 receptor occupancy, to demonstrate that REGN5054 has minimal impact on T-cell activity. Preclinical immuno-PET studies demonstrated that 89Zr-DFO-REGN5054 specifically detected CD8+ T cells in lymphoid tissues of CD8-genetically humanized immunocompetent mice (VelociT mice) and discerned therapy-induced changes in CD8+ TILs in two models of response to a CD20xCD3 T-cell activating bispecific antibody (REGN1979, odronextamab). Toxicology studies in cynomolgus monkeys showed no overt toxicity, and immuno-PET imaging in cynomolgus monkeys demonstrated dose-dependent clearance and specific targeting to lymphoid tissues. This work supports the clinical investigation of 89Zr-DFO-REGN5054 to monitor T-cell responses in patients undergoing cancer immunotherapy.


Subject(s)
Antibodies, Bispecific , Neoplasms , Animals , CD8-Positive T-Lymphocytes , Cytokines/therapeutic use , Humans , Lymphocytes, Tumor-Infiltrating , Macaca fascicularis , Mice , Positron-Emission Tomography/methods , Radioisotopes , Tumor Microenvironment , Zirconium
10.
Proc Natl Acad Sci U S A ; 119(25): e2205536119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35700360

ABSTRACT

Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin-glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.


Subject(s)
Dystrophin , Focal Adhesions , Mechanotransduction, Cellular , Muscular Dystrophy, Duchenne , Animals , Cell Line , Dystrophin/genetics , Focal Adhesions/genetics , Mechanotransduction, Cellular/genetics , Mice , Muscle Cells , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Mutation, Missense , Polymorphism, Single Nucleotide
11.
Nature ; 600(7889): 536-542, 2021 12.
Article in English | MEDLINE | ID: mdl-34819669

ABSTRACT

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Subject(s)
Chromosomes , Proteome , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Chromatin/genetics , Chromosomes/metabolism , Humans , Nuclear Matrix-Associated Proteins/metabolism , Proteome/metabolism , RNA, Ribosomal , RNA-Binding Proteins/genetics
12.
Science ; 374(6563): eabf3067, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591613

ABSTRACT

A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges­how to comprehensively map such systems and how to identify which are under mutational selection­have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.


Subject(s)
Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Protein Interaction Maps/genetics , Genes, Neoplasm , Humans , Mutation , Protein Interaction Mapping/methods
13.
Mol Cancer Ther ; 20(10): 1966-1976, 2021 10.
Article in English | MEDLINE | ID: mdl-34315762

ABSTRACT

Lung cancers harboring mesenchymal-to-epithelial transition factor (MET) genetic alterations, such as exon 14 skipping mutations or high-level gene amplification, respond well to MET-selective tyrosine kinase inhibitors (TKI). However, these agents benefit a relatively small group of patients (4%-5% of lung cancers), and acquired resistance limits response durability. An antibody-drug conjugate (ADC) targeting MET might enable effective treatment of MET-overexpressing tumors (approximately 25% of lung cancers) that do not respond to MET targeted therapies. Using a protease-cleavable linker, we conjugated a biparatopic METxMET antibody to a maytansinoid payload to generate a MET ADC (METxMET-M114). METxMET-M114 promotes substantial and durable tumor regression in xenografts with moderate to high MET expression, including models that exhibit innate or acquired resistance to MET blockers. Positron emission tomography (PET) studies show that tumor uptake of radiolabeled METxMET antibody correlates with MET expression levels and METxMET-M114 efficacy. In a cynomolgus monkey toxicology study, METxMET-M114 was well tolerated at a dose that provides circulating drug concentrations that are sufficient for maximal antitumor activity in mouse models. Our findings suggest that METxMET-M114, which takes advantage of the unique trafficking properties of our METxMET antibody, is a promising candidate for the treatment of MET-overexpressing tumors, with the potential to address some of the limitations faced by the MET function blockers currently in clinical use.


Subject(s)
Antibodies, Monoclonal/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Humans , Immunoconjugates/pharmacokinetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macaca fascicularis , Male , Mice , Mice, SCID , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Sci Rep ; 11(1): 14397, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257348

ABSTRACT

T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.


Subject(s)
Antibodies, Bispecific , CD3 Complex , Cytokines , Cytokines/metabolism , Lymphocyte Activation , Tissue Distribution
15.
J Immunother Cancer ; 9(1)2021 01.
Article in English | MEDLINE | ID: mdl-33483343

ABSTRACT

BACKGROUND: Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blocking antibodies including cemiplimab have generated profound clinical activity across diverse cancer types. Tumorous PD-L1 expression, as assessed by immunohistochemistry (IHC), is an accepted predictive marker of response to therapy in some cancers. However, expression is often dynamic and heterogeneous, and therefore not reliably captured by IHC from tumor biopsies or archival samples. Thus, there is significant need for accurate whole-body quantification of PD-L1 levels. METHODS: We radiolabeled the novel human anti-PD-L1 antibody REGN3504 with zirconium-89 (89Zr) using the chelator p-SCN-Bn-Deferoxamine to enable non-invasive immuno-positron emission tomography (immuno-PET) of PD-L1 expression. PET imaging assessed the localization of 89Zr-REGN3504 to multiple human tumor xenografts. Mice genetically humanized for PD-1 and PD-L1 were used to assess the biodistribution of 89Zr-REGN3504 to normal tissues and the estimated human radiation dosimetry of 89Zr-REGN3504 was also determined. Pharmacokinetics of REGN3504 was assessed in monkeys. RESULTS: Clear localization of 89Zr-REGN3504 to human tumor xenografts was observed via PET imaging and ex vivo biodistribution studies demonstrated high (fourfold to sixfold) tumor:blood ratios. 89Zr-REGN3504 specifically localized to spleen and lymph nodes in the PD-1/PD-L1 humanized mice. 89Zr-REGN3504 immuno-PET accurately detected a significant reduction in splenic PD-L1 positive cells following systemic treatment with clodronate liposomes. Radiation dosimetry suggested absorbed doses would be within guidelines for other 89Zr radiolabeled, clinically used antibodies. Pharmacokinetics of REGN3504 was linear. CONCLUSION: This work supports the clinical translation of 89Zr-REGN3504 immuno-PET for the assessment of PD-L1 expression. Future clinical studies will aim to investigate the utility of 89Zr-REGN3504 immuno-PET for predicting and monitoring response to anti-PD-1 therapy.


Subject(s)
Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/metabolism , Neoplasms/diagnostic imaging , Radioisotopes/chemistry , Zirconium/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Case-Control Studies , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Haplorhini , Humans , Male , Mice , Neoplasm Transplantation , Neoplasms/immunology , Positron-Emission Tomography , Tissue Distribution
16.
Bioorg Med Chem ; 28(23): 115785, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33099182

ABSTRACT

ADCs based on the natural product maytansine have been successfully employed clinically. In a previous report, ADCs based on hydrophilic non-cell permeable maytansinoids was presented. The authors in this report further explore the maytansine scaffold to develop tubulin inhibitors capable of cell permeation. The research resulted in amino-benzoyl-maytansinoid payloads that were further elaborated with linkers for conjugating to antibodies. This approach was applied to MUC16 tumor targeting antibodies for ovarian cancers. A positive control ADC was evaluated alongside the amino-benzoyl-maytansinoid ADC and the efficacy observed was equivalent while the isotype control ADCs had no effect.


Subject(s)
Immunoconjugates/metabolism , Maytansine/chemistry , Tubulin Modulators/chemistry , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Maytansine/metabolism , Mice, SCID , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Transplantation, Heterologous , Tubulin Modulators/metabolism
17.
Cancer Discov ; 10(12): 1950-1967, 2020 12.
Article in English | MEDLINE | ID: mdl-32727735

ABSTRACT

Activating mutations in RAS GTPases drive many cancers, but limited understanding of less-studied RAS interactors, and of the specific roles of different RAS interactor paralogs, continues to limit target discovery. We developed a multistage discovery and screening process to systematically identify genes conferring RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry, we generated a protein-protein interaction map of RAS interactors and pathway components containing hundreds of interactions. From this network, we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for KRAS-dependent genetic interactions (GI). This approach identified new RAS effectors, including the adhesion controller RADIL and the endocytosis regulator RIN1, and >250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of multiomic approaches to uncover synthetic lethal combinations specific for hitherto untreatable cancer genotypes. SIGNIFICANCE: We establish a deep network of protein-protein and genetic interactions in the RAS pathway. Many interactions validated here demonstrate important specificities and redundancies among paralogous RAS regulators and effectors. By comparing synthetic lethal interactions across KRAS-dependent and KRAS-independent cell lines, we identify several new combination therapy targets for RAS-driven cancers.This article is highlighted in the In This Issue feature, p. 1775.


Subject(s)
Lung Neoplasms/genetics , Proteomics/methods , ras Proteins/genetics , Humans
18.
Nature ; 580(7801): 136-141, 2020 04.
Article in English | MEDLINE | ID: mdl-32238925

ABSTRACT

Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Culture Techniques/methods , Cell Proliferation/genetics , Genome, Human/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Spheroids, Cellular/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Amino Acid Motifs , Animals , Carboxypeptidases/antagonists & inhibitors , Carboxypeptidases/deficiency , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Molecular Targeted Therapy , Mutation , Phenotype , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/metabolism , Signal Transduction , Spheroids, Cellular/metabolism , Xenograft Model Antitumor Assays
19.
Sci Transl Med ; 11(497)2019 06 19.
Article in English | MEDLINE | ID: mdl-31217340

ABSTRACT

Advanced ovarian cancer is frequently treated with combination chemotherapy, but high recurrence rates show the need for therapies that can produce durable responses and extend overall survival. Bispecific antibodies that interact with tumor antigens on cancer cells and activating receptors on immune cells offer an innovative immunotherapy approach. Here, we describe a human bispecific antibody (REGN4018) that binds both Mucin 16 (MUC16), a glycoprotein that is highly expressed on ovarian cancer cells, and CD3, thus bridging MUC16-expressing cells with CD3+ T cells. REGN4018 induced T cell activation and killing of MUC16-expressing tumor cells in vitro. Binding and cytotoxicity of REGN4018 in vitro were minimally affected by high concentrations of CA-125, the shed form of MUC16, which is present in patients. In preclinical studies with human ovarian cancer cells and human T cells in immunodeficient mice, REGN4018 potently inhibited growth of intraperitoneal ovarian tumors. Moreover, in a genetically engineered immunocompetent mouse expressing human CD3 and human MUC16 [humanized target (HuT) mice], REGN4018 inhibited growth of murine tumors expressing human MUC16, and combination with an anti-PD-1 antibody enhanced this efficacy. Immuno-PET imaging demonstrated localization of REGN4018 in MUC16-expressing tumors and in T cell-rich organs such as the spleen and lymph nodes. Toxicology studies in cynomolgus monkeys showed minimal and transient increases in serum cytokines and C-reactive protein after REGN4018 administration, with no overt toxicity. Collectively, these data demonstrate potent antitumor activity and good tolerability of REGN4018, supporting clinical evaluation of REGN4018 in patients with MUC16-expressing advanced ovarian cancer.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , CA-125 Antigen/immunology , CA-125 Antigen/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , T-Lymphocytes/metabolism , Animals , CD13 Antigens/immunology , CD13 Antigens/metabolism , Female , Flow Cytometry , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Jurkat Cells , Macaca fascicularis , Mice , Ovarian Neoplasms/metabolism , T-Lymphocytes/immunology
20.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29684277

ABSTRACT

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Immunoconjugates/administration & dosage , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice , Mice, Nude , Molecular Imaging/methods , Neoplasms/pathology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/immunology , Radiopharmaceuticals/pharmacokinetics , Receptors, Prolactin/immunology , Receptors, Prolactin/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...