Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4247, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869079

ABSTRACT

The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers, using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to nominate two salient super-enhancers that drive proliferation and migration of cancer cells. Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct target genes for these super-enhancers and confirm their activity specifically within the cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-omic approach examines a number of fundamental questions about how regulatory information encoded into super-enhancers drives gene expression networks that underlie the biology of ovarian cancer.


Subject(s)
Enhancer Elements, Genetic , Ovarian Neoplasms , Carcinogenesis/genetics , Carcinoma, Ovarian Epithelial/genetics , Chromatin , Enhancer Elements, Genetic/genetics , Female , Gene Expression , Humans , Ovarian Neoplasms/genetics
2.
Cancers (Basel) ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35406623

ABSTRACT

Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo. Using a combination of eRNA transcription and chromatin modifications, we have identified a novel enhancer located 30 kb upstream of Colony Stimulating Factor 1 (CSF1). Notably, CSF1 is implicated in the progression of breast cancer, is overexpressed in triple-negative breast cancer (TNBC) cell lines, and its enhancer is primarily active in TNBC patient tumors. Genomic deletion of the enhancer (via CRISPR/Cas9) enabled us to validate this regulatory element as a bona fide enhancer of CSF1 and subsequent cell-based assays revealed profound effects on cancer cell proliferation, colony formation, and migration. Epigenetic silencing of the enhancer via CRISPR-interference assays (dCas9-KRAB) coupled to RNA-sequencing, enabled unbiased identification of additional target genes, such as RSAD2, that are predictive of clinical outcome. Additionally, we repurposed the RNA-guided RNA-targeting CRISPR-Cas13 machinery to specifically degrade the eRNAs transcripts produced at this enhancer to determine the consequences on CSF1 mRNA expression, suggesting a post-transcriptional role for these non-coding transcripts. Finally, we test our eRNA-dependent model of CSF1 enhancer function and demonstrate that our results are extensible to other forms of cancer. Collectively, this work describes a novel enhancer that is active in the TNBC subtype, which is associated with cellular growth, and requires eRNA transcripts for proper enhancer function. These results demonstrate the significant impact of enhancers in cancer biology and highlight their potential as tractable targets for therapeutic intervention.

3.
J Theor Biol ; 420: 68-81, 2017 05 07.
Article in English | MEDLINE | ID: mdl-28130096

ABSTRACT

Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and a range of other features. These differences can affect model dynamics, with different models potentially yielding different predictions and parameter estimates from the same data. Given the increasing use of mathematical models to inform public health decision-making, it is important to assess model distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether inferences from the model are robust to realistic variations in model structure). In this paper, we examined the effects of uncertainty in model structure in the context of epidemic cholera, testing a range of models with differences in transmission and loss of immunity structure, based on known features of cholera epidemiology. We fit these models to simulated epidemic and long-term data, as well as data from the 2006 Angola epidemic. We evaluated model distinguishability based on fit to data, and whether the parameter values, model behavior, and forecasting ability can accurately be inferred from incidence data. In general, all models were able to successfully fit to all data sets, both real and simulated, regardless of whether the model generating the simulated data matched the fitted model. However, in the long-term data, the best model fits were achieved when the loss of immunity structures matched those of the model that simulated the data. Two parameters, one representing person-to-person transmission and the other representing the reporting rate, were accurately estimated across all models, while the remaining parameters showed broad variation across the different models and data sets. The basic reproduction number (R0) was often poorly estimated even using the correct model, due to practical unidentifiability issues in the waterborne transmission pathway which were consistent across all models. Forecasting efforts using noisy data were not successful early in the outbreaks, but once the epidemic peak had been achieved, most models were able to capture the downward incidence trajectory with similar accuracy. Forecasting from noise-free data was generally successful for all outbreak stages using any model. Our results suggest that we are unlikely to be able to infer mechanistic details from epidemic case data alone, underscoring the need for broader data collection, such as immunity/serology status, pathogen dose response curves, and environmental pathogen data. Nonetheless, with sufficient data, conclusions from forecasting and some parameter estimates were robust to variations in the model structure, and comparative modeling can help to determine how realistic variations in model structure may affect the conclusions drawn from models and data.


Subject(s)
Cholera/epidemiology , Models, Theoretical , Uncertainty , Angola , Basic Reproduction Number , Cholera/immunology , Cholera/transmission , Computer Simulation , Epidemics , Humans
4.
J Biol Dyn ; 10: 222-49, 2016.
Article in English | MEDLINE | ID: mdl-26981710

ABSTRACT

The role of spatial arrangements on the spread and management strategies of a cholera epidemic is investigated. We consider the effect of human and pathogen movement on optimal vaccination strategies. A metapopulation model is used, incorporating a susceptible-infected-recovered system of differential equations coupled with an equation modelling the concentration of Vibrio cholerae in an aquatic reservoir. The model compared spatial arrangements and varying scenarios to draw conclusions on how to effectively manage outbreaks. The work is motivated by the 2010 cholera outbreak in Haiti. Results give guidance for vaccination strategies in response to an outbreak.


Subject(s)
Cholera/epidemiology , Disease Outbreaks , Humans , Models, Theoretical , Vibrio cholerae/isolation & purification , Vibrio cholerae/pathogenicity , Water Microbiology
5.
Obesity (Silver Spring) ; 16(10): 2362-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18719666

ABSTRACT

We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Subject(s)
Absorptiometry, Photon , Adipose Tissue/physiopathology , Adiposity/genetics , Obesity/physiopathology , Thinness/physiopathology , Adipose Tissue/diagnostic imaging , Animals , Dietary Fats/administration & dosage , Disease Models, Animal , Female , Genotype , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Obesity/diagnostic imaging , Obesity/genetics , Phenotype , Reproducibility of Results , Thinness/diagnostic imaging , Thinness/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...