Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 41(9): 1606-1620.e8, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37625401

ABSTRACT

The KRASG12D mutation is present in nearly half of pancreatic adenocarcinomas (PDAC). We investigated the effects of inhibiting the KRASG12D mutant protein with MRTX1133, a non-covalent small molecule inhibitor of KRASG12D, on early and advanced PDAC and its influence on the tumor microenvironment. Employing 16 different models of KRASG12D-driven PDAC, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8+ effector T cells, decreases myeloid infiltration, and reprograms cancer-associated fibroblasts. MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8+ T cells and immune checkpoint blockade (ICB) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of KRASG12D in advanced PDAC and human patient derived organoids induces FAS expression in cancer cells and facilitates CD8+ T cell-mediated death. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with ICB in clinical trials.


Subject(s)
CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment
2.
bioRxiv ; 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36824971

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.

3.
EMBO J ; 41(7): e109470, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35212000

ABSTRACT

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Subject(s)
Collagen Type I , Myofibroblasts , Wound Healing , Animals , Collagen Type I/genetics , Fibroblasts , Integrin beta1/genetics , Mice , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...