Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(3): 1578-1591, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38333985

ABSTRACT

Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.


Subject(s)
Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Humans , Water/chemistry , Scattering, Small Angle , X-Ray Diffraction , Mucus/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Mucins/chemistry
2.
Vet Pathol ; 55(6): 861-870, 2018 11.
Article in English | MEDLINE | ID: mdl-30071782

ABSTRACT

The authors used microscopy and synchrotron-based small-angle X-ray scattering analysis (SAXS) to describe lesions macroscopically typical of tropical keratopathy ("Florida spots") from 6 cats on St Kitts. Microscopically, there were varying degrees of epithelial hyperplasia and thinning of the cornea (by 4% to 18%) due to loss of corneal stroma associated with dense accumulations of collagen in the superficial stroma. The collagen fibrils in lesions were wider and had more variable diameters (39.5 ± 5.0 nm, mean ± SD) than in normal corneas (25.9 ± 3.6 nm; P < .01). There were occasional vacuoles (<1 µm) in the corneal epithelial basement membrane but no evidence of inflammation, edema, stromal neovascularization, fibrosis, acid-fast organisms, or structures suggestive of a fungal organism. SAXS analysis showed collagen fibril diameters and variation in size were greater in stroma containing the lesions compared to normal corneas (48.8 ± 4.5 nm vs 35.5 ± 2.6; P < .05). The d-spacing of collagen in the stroma of lesions and normal corneas was the same, but the average orientation index of collagen in lesions was greater (0.428 ± 0.08 vs 0.285 ± 0.03; P < .05). A survey revealed Florida spots lesions were static over time and became less obvious in only 1 of 6 affected cats adopted on St Kitts and taken to areas in the US where lesions are not reported. An anterior stromal collagen disorder with various degrees of epithelial hyperplasia is the pathologic hallmark of lesions clinically identical to Florida spots in cats from St Kitts.


Subject(s)
Cat Diseases/pathology , Corneal Diseases/veterinary , Animals , Cats , Corneal Diseases/pathology , Corneal Stroma/pathology , Corneal Stroma/ultrastructure , Female , Male , Microscopy, Electron, Transmission/veterinary , Saint Kitts and Nevis , Scattering, Small Angle , Skin/pathology , X-Ray Diffraction/methods , X-Ray Diffraction/veterinary
3.
J Sci Food Agric ; 98(9): 3524-3531, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29288543

ABSTRACT

BACKGROUND: Ovine leather has around half the tear strength of bovine leather and is therefore not suitable for high-value applications such as shoes. Tear strength has been correlated with the natural collagen fibril alignment (orientation index, OI). It is hypothesized that it could be possible to artificially increase the OI of the collagen fibrils and that an artificial increase in OI could increase tear strength. RESULTS: Ovine skins, after pickling and bating, were strained biaxially during chrome tanning. The strain ranged from 2 to 15% of the initial sample length, either uniformly in both directions by 10% or with 3% in one direction and 15% in the other. Once tanned, the leather tear strengths were measured and the collagen fibril orientation was measured using synchrotron-based small-angle X-ray scattering. CONCLUSION: The OI increased as a result of strain during tanning from 0.48 to 0.79 (P = 0.001) measured edge-on and the thickness-normalized tear strength increased from 27 to 43 N mm-1 (P < 0.001) after leather was strained 10% in two orthogonal directions. This is evidence to support a causal relationship between high OI (measured edge-on), highly influenced by thickness, and tear strength. It also provides a method to produce stronger leather. © 2017 Society of Chemical Industry.


Subject(s)
Collagen/chemistry , Mechanical Phenomena , Sheep , Skin/chemistry , Animals , Cattle , Fibril-Associated Collagens/ultrastructure , Skin Physiological Phenomena , Tanning/methods
4.
ACS Biomater Sci Eng ; 3(10): 2524-2532, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-33465908

ABSTRACT

Materials composed primarily of collagen are important as surgical scaffolds and other medical devices and require flexibility. However, the factors that control the suppleness and flexibility of these materials are not well understood. Acellular dermal matrix materials in aqueous mixtures of 2-propanol were studied. Synchrotron-based small-angle X-ray scattering was used to characterize the collagen structure and structural arrangement. Stiffness was measured by bend tests. Bend modulus increased logarithmically with 2-propanol concentration from 0.5 kPa in water to 103 kPa in pure 2-propanol. The intermolecular spacing between tropocollagen molecules decreased from 15.3 to 11.4 Å with increasing 2-propanol concentration while fibril diameter decreased from 57.2 to 37.2 nm. D-spacing initially increased from 63.6 to 64.2 nm at 50% 2-propanol then decreased to 60.3 nm in pure 2-propanol. The decrease in intermolecular spacing and fibril diameter are due to removal of water and the collapse of the hydrogen bond structure between tropocollagen molecules causing closer packing of the molecules within a fibril. We speculate this tighter molecular packing may restrict the sliding of collagen within fibrils, and similar disruption of the extended hydration layer between fibrils may lead to restriction of sliding between fibrils. This mechanism for tissue stiffness may be more general.

5.
ACS Biomater Sci Eng ; 3(10): 2550-2558, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-33465911

ABSTRACT

Scaffold biomaterials are typically applied surgically as reinforcement for weakened or damaged tissue, acting as substrates on which healing tissue can grow. Natural extracellular matrix (ECM) materials consisting mainly of collagen are often used for this purpose, but are anisotropic. Ovine forestomach matrix (OFM) ECM was exposed to increasing strain and synchrotron-based SAXS diffraction patterns and revealed that the collagen fibrils within underwent changes in orientation, orientation index (a measure of isotropy), and extension. Response to the strain depended on the direction the collagen fibrils were oriented. When the ECM was stretched in the direction of collagen fibril orientation, the fibrils become more oriented and begin to take up the strain immediately (as shown by the increased d-spacing). Stretch applied perpendicular to dominant fibril direction caused the fibrils to initially become less oriented as they were pulled away from the original direction, and less force was initially transmitted along the length of the fibrils (i.e., the d-spacing changed less). SAXS analysis of OFM and the starting raw tissue showed there is no difference in the structural arrangement of the collagen fibrils. Understanding the directional structural response of these materials under strain may influence how surgeons select and place the materials in use.

SELECTION OF CITATIONS
SEARCH DETAIL
...