Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 94(3): 773-784, 2020 03.
Article in English | MEDLINE | ID: mdl-32157349

ABSTRACT

Recently revised OECD inhalation toxicity testing guidelines require measurements of lung burden immediately after and for periods following exposure for nanomaterials. Lung burden is a function of pulmonary deposition and retention of nanoparticles. Using lung burden studies as per OECD guidelines, it may be possible to assess clearance mechanisms of nanoparticles. In this study, male rats were exposed to silver nanoparticle (AgNP) aerosols (18.1-19.6 nm) generated from a spark generator. Exposure groups consisted of (1) control (fresh air), (2) low (31.2 ± 8.5 µg/m3), (3) moderate (81.8 ± 11.4 µg/m3), and (4) high concentrations (115.6 ± 30.5 µg/m3). Rats were exposed for 6-h/day, 5-days/week for 4 weeks (28-days) based on the revised OECD test guideline 412. Bronchoalveolar lavage (BAL) fluids were collected on post-exposure observation (PEO)-1 and PEO-7 days and analyzed for inflammatory cells and inflammatory biomarkers. The lung burdens of Ag from AgNPs were measured on PEO-1, PEO-7, and PEO-28 days to obtain quantitative mass concentrations per lung. Differential counting of blood cells and inflammatory biomarkers in BAL fluid and histopathological evaluation of lung tissue indicated that exposure to the high concentrations of AgNP aerosol induced inflammation at PEO-1, slowly resolved at PEO-7 and completely resolved at PEO-28 days. Lung burden measurement suggested that Ag from AgNPs was cleared through two different modes; fast and slow clearance. The fast clearance component was concentration-dependent with half-times ranging from two to four days and clearance rates of 0.35-0.17/day-1 from low to high concentrations. The slow clearance had half-times of 100, 57, and 76 days and clearance rates of 0.009, 0.012, and 0.007/day-1 for the high, moderate and low concentration exposure. The exact mechanism of clearance is not known currently. The fast clearance component which was concentration-dependent could be dependent on the dissolution of AgNPs and the slow clearance would be due to slow clearance of the low dissolution AgNPs secondary particles originating from silver ions reacting with biogenic anions. These secondary AgNPs might be cleared by mechanisms other than dissolution such as mucociliary escalation, translocation to the lymphatic system or other organs.


Subject(s)
Inhalation Exposure/analysis , Metal Nanoparticles/analysis , Silver/metabolism , Aerosols , Animals , Bronchoalveolar Lavage Fluid , Male , Metabolic Clearance Rate , Metal Nanoparticles/toxicity , Particle Size , Rats , Silver/toxicity
2.
Environ Health Perspect ; 123(8): 743-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25782181

ABSTRACT

BACKGROUND: Employers, courts, and the general public judge the credibility of professionals based on credentials such as academic degrees, publications, memberships in professional organizations, board certifications, and professional registrations. However, the relevance and merit of these credentials can be difficult to determine objectively. Board certification can be a reliable indicator of proficiency if the certifying organization demonstrates, through regularly scheduled independent review, that its processes meet established standards and when a certificate holder is required to periodically demonstrate command of a body of knowledge that is essential to current professional practice. OBJECTIVE: We report herein a current Standard of Knowledge in general toxicology compiled from the experience and opinions of 889 certified practicing professional toxicologists. DISCUSSION: An examination is the most commonly used instrument for testing a certification candidate's command of the body of knowledge. However, an examination-based certification is only creditable when the body of knowledge, to which a certification examination tests, is representative of the current knowledge, skills, and capabilities needed to effectively practice at the professional level. Thus, that body of knowledge must be the current "Standard of Knowledge" for the profession, compiled in a transparent fashion from current practitioners of the profession. CONCLUSION: This work was conducted toward ensuring the scientific integrity of the products produced by professional toxicologists.


Subject(s)
Certification , Professional Practice/standards , Toxicology/standards
3.
Nanotoxicology ; 7(2): 169-80, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22264098

ABSTRACT

In a previous study, the lung function, as indicated by the tidal volume, minute volume, and peak inspiration flow, decreased during 90 days of exposure to silver nanoparticles and was accompanied by inflammatory lesions in the lung morphology. Therefore, this study investigated the recovery from such lung function changes in rats following the cessation of 12 weeks of nanoparticle exposure. Male and female rats were exposed to silver nanoparticles (14-15 nm diameter) at concentrations of 0.66 × 10(6) particles/cm(3) (49 µg/m(3), low dose), 1.41 × 10(6) particles/cm(3) (117 µg/m(3), middle dose), and 3.24 × 10(6) particles/cm(3) (381 µg/m(3), high dose) for 6 h/day in an inhalation chamber for 12 weeks. The rats were then allowed to recover. The lung function was measured every week during the exposure period and after the cessation of exposure, plus animals were sacrificed after the 12-week exposure period, and 4 weeks and 12 weeks after the exposure cessation. An exposure-related lung function decrease was measured in the male rats after the 12-week exposure period and 12 weeks after the exposure cessation. In contrast, the female rats did not show a consistent lung function decrease either during the exposure period or following the exposure cessation. The histopathology showed a gradual recovery from the lung inflammation in the female rats, whereas the male rats in the high-dose group exhibited persistent inflammation throughout the 12-week recovery period. Therefore, the present results suggest a potential persistence of lung function changes and inflammation induced by silver nanoparticle exposure above the no observed adverse effect level.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Pneumonia/chemically induced , Silver/toxicity , Animals , Dose-Response Relationship, Drug , Female , Inhalation Exposure/adverse effects , Lung/metabolism , Lung/pathology , Lung/physiopathology , Male , Particle Size , Peak Expiratory Flow Rate/drug effects , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/physiopathology , Rats , Rats, Sprague-Dawley , Recovery of Function , Respiratory Rate/drug effects , Silver/pharmacokinetics , Tidal Volume/drug effects , Time Factors
4.
Part Fibre Toxicol ; 8: 16, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21569586

ABSTRACT

BACKGROUND: Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear. RESULTS: The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 µg/m3), middle-dose (2.36 × 105 particle/cm3, 0.38 µg/m3), and high-dose (1.85 × 106 particle/cm3, 20.02 µg/m3). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold nanoparticles showed a dose-dependent accumulation of gold in only lungs and kidneys with a gender-related difference in gold nanoparticles content in kidneys. CONCLUSIONS: Lungs were the only organ in which there were dose-related changes in both male and female rats. Changes observed in lung histopathology and function in high-dose animals indicate that the highest concentration (20 µg/m3) is a LOAEL and the middle concentration (0.38 µg/m3) is a NOAEL for this study.


Subject(s)
Gold/administration & dosage , Gold/toxicity , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/toxicity , Administration, Inhalation , Animals , Blood/drug effects , Blood Chemical Analysis , Body Weight , Eating/drug effects , Female , Humans , Kidney/pathology , Kidney/physiology , Lung/pathology , Lung/physiology , Male , Materials Testing , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Organ Size , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution
5.
Part Fibre Toxicol ; 7: 20, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20691052

ABSTRACT

BACKGROUND: The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. RESULTS: This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys. CONCLUSIONS: The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Bile Ducts/drug effects , Bile Ducts/pathology , Body Weight/drug effects , Eating/drug effects , Female , Kidney/metabolism , Male , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Rats , Rats, Inbred F344 , Silver/pharmacokinetics , Tissue Distribution
6.
J Toxicol Environ Health A ; 72(9): 585-98, 2009.
Article in English | MEDLINE | ID: mdl-19296408

ABSTRACT

The threshold of toxicologic concern (TTC) concept was developed as a method to identify a chemical intake level that is predicted to be without adverse human health effects assuming daily intake over the course of a 70-yr life span. The TTC values are based on known structure-activity relationships and do not require chemical-specific toxicity data. This allows safety assessment (or prioritization for testing) of chemicals with known molecular structure but little or no toxicity data. Recently, the TTC concept was extended to inhaled substances by converting a TTC expressed in micrograms per person per day to an airborne concentration (ng/m(3)), making allowance for intake by routes in addition to inhalation and implicitly assuming 100% bioavailability of inhaled toxicants. The resulting concentration of no toxicologic concern (CoNTC), 30 ng/m(3), represents a generic airborne concentration that is expected to pose no hazard to humans exposed continuously throughout a 70-yr lifetime. Published data on the levels of mycotoxins in agricultural dusts or in fungal spores, along with measured levels of airborne mycotoxins, spores, or dust in various environments, were used to identify conditions under which mycotoxin exposures might reach the CoNTC. Data demonstrate that airborne concentrations of dusts and mold spores sometimes encountered in agricultural environments have the potential to produce mycotoxin concentrations greater than the CoNTC. On the other hand, these data suggest that common exposures to mycotoxins from airborne molds in daily life, including in the built indoor environment, are below the concentration of no toxicologic concern.


Subject(s)
Environmental Exposure/adverse effects , Inhalation Exposure/adverse effects , Mycotoxins/adverse effects , Mycotoxins/analysis , Occupational Exposure/adverse effects , Agriculture , Environmental Exposure/legislation & jurisprudence , Humans , Inhalation Exposure/legislation & jurisprudence , Occupational Exposure/legislation & jurisprudence , Threshold Limit Values , United States , United States Food and Drug Administration/legislation & jurisprudence
7.
Toxicol Sci ; 108(2): 452-61, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19033393

ABSTRACT

The subchronic inhalation toxicity of silver nanoparticles was studied in Sprague-Dawley rats. Eight-week-old rats, weighing approximately 253.2 g (males) and 162.6 g (females), were divided into four groups (10 rats in each group): fresh-air control, low dose (0.6 x 10(6) particle/cm(3), 49 microg/m(3)), middle dose (1.4 x 10(6) particle/cm(3), 133 microg/m(3)), and high dose (3.0 x 10(6) particle/cm(3), 515 microg/m(3)). The animals were exposed to silver nanoparticles (average diameter 18-19 nm) for 6 h/day, 5 days/week, for 13 weeks in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and pulmonary function tests were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and the organ weights were measured. Bile-duct hyperplasia in the liver increased dose dependently in both the male and female rats. Histopathological examinations indicated dose-dependent increases in lesions related to silver nanoparticle exposure, including mixed inflammatory cell infiltrate, chronic alveolar inflammation, and small granulomatous lesions. Target organs for silver nanoparticles were considered to be the lungs and liver in the male and female rats. No observable adverse effect level of 100 microg/m(3) is suggested from the experiments.


Subject(s)
Inhalation Exposure/adverse effects , Nanoparticles/toxicity , Silver/toxicity , Animals , Blood Chemical Analysis , Body Weight/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Erythrocyte Aggregation/drug effects , Female , Kidney Function Tests , Lung Diseases/chemically induced , Lung Diseases/pathology , Male , Nanoparticles/administration & dosage , Organ Size/drug effects , Particle Size , Pneumonia/chemically induced , Pneumonia/pathology , Rats , Rats, Sprague-Dawley , Sex Characteristics , Silver/administration & dosage , Silver/pharmacokinetics
9.
Birth Defects Res A Clin Mol Teratol ; 73(12): 931-55, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16342278

ABSTRACT

Trichloroethylene (TCE) and dichloroethylene (DCE) are high-volume industrial chemicals frequently found as contaminants in public drinking water supplies. The developmental toxicity of both chemicals has been evaluated in laboratory and epidemiologic studies. It has been suggested that TCE and DCE are specific cardiac teratogens and that drinking water contaminated with them increases the risk of congenital heart defects in exposed human populations. In contrast, other laboratory and epidemiologic studies do not find an increase in developmental effects, either in general or specifically affecting the heart. This laboratory and epidemiologic base was reviewed to evaluate the strengths and weaknesses of the conflicting published reports. We conclude that the weight of experimental and epidemiologic evidence does not support the hypothesis that TCE or DCE is a selective developmental toxicant in general or a cardiac teratogen specifically.


Subject(s)
Abnormalities, Drug-Induced/etiology , Dichloroethylenes/toxicity , Environmental Exposure/adverse effects , Solvents/toxicity , Teratogens/toxicity , Trichloroethylene/toxicity , Water Pollutants, Chemical/toxicity , Adult , Animals , Animals, Laboratory , Dichloroethylenes/classification , Female , Humans , Pregnancy , Teratogens/classification , Trichloroethylene/classification
12.
J Occup Environ Hyg ; 1(6): 349-54, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15238325

ABSTRACT

An exhaustive search of the literature on the growth of mold on fiberglass insulation materials was conducted. Because of the paucity of published material, both peer-reviewed and non-peer-reviewed articles were included. The literature indicates that fiberglass can serve as a support matrix for the collection of debris which, when moist, have the capability of supporting the growth of mold. Further, binding and paper-based moisture barriers from fiberglass resins are also capable of supporting the growth of mold when moist.


Subject(s)
Air Pollution, Indoor , Construction Materials , Fungi/growth & development , Glass , Water
13.
Int J Toxicol ; 23(1): 3-10, 2004.
Article in English | MEDLINE | ID: mdl-15162841

ABSTRACT

Mycotoxins are known to produce veterinary and human diseases when consumed with contaminated foods. Mycotoxins have also been proposed to cause adverse human health effects after inhalation exposure to mold in indoor residential, school, and office environments. Epidemiologic evidence has been inadequate to establish a causal relationship between indoor mold and nonallergic, toxigenic health effects. In this article, the authors model a maximum possible dose of mycotoxins that could be inhaled in 24 h of continuous exposure to a high concentration of mold spores containing the maximum reported concentration of aflatoxins B1 and B2, satratoxins G and H, fumitremorgens B and C, verruculogen, and trichoverrols A and B. These calculated doses are compared to effects data for the same mycotoxins. None of the maximum doses modeled were sufficiently high to cause any adverse effect. The model illustrates the inefficiency of delivery of mycotoxins via inhalation of mold spores, and suggests that the lack of association between mold exposure and mycotoxicoses in indoor environments is due to a requirement for extremely high airborne spore levels and extended periods of exposure to elicit a response. This model is further evidence that human mycotoxicoses are implausible following inhalation exposure to mycotoxins in mold-contaminated home, school, or office environments.


Subject(s)
Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Mycotoxins/analysis , Adult , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/statistics & numerical data , Algorithms , Humans , Inhalation Exposure/adverse effects , Inhalation Exposure/statistics & numerical data , Male , Models, Statistical , Mycotoxins/adverse effects , Risk Assessment , Spores, Fungal/chemistry
14.
J Occup Environ Med ; 45(5): 470-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12762072

ABSTRACT

Molds are common and important allergens. About 5% of individuals are predicted to have some allergic airway symptoms from molds over their lifetime. However, it should be remembered that molds are not dominant allergens and that the outdoor molds, rather than indoor ones, are the most important. For almost all allergic individuals, the reactions will be limited to rhinitis or asthma; sinusitis may occur secondarily due to obstruction. Rarely do sensitized individuals develop uncommon conditions such as ABPA or AFS. To reduce the risk of developing or exacerbating allergies, mold should not be allowed to grow unchecked indoors. When mold colonization is discovered in the home, school, or office, it should be remediated after the source of the moisture that supports its growth is identified and eliminated. Authoritative guidelines for mold remediation are available. Fungi are rarely significant pathogens for humans. Superficial fungal infections of the skin and nails are relatively common in normal individuals, but those infections are readily treated and generally resolve without complication. Fungal infections of deeper tissues are rare and in general are limited to persons with severely impaired immune systems. The leading pathogenic fungi for persons with nonimpaired immune function, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma, may find their way indoors with outdoor air but normally do not grow or propagate indoors. Due to the ubiquity of fungi in the environment, it is not possible to prevent immunecompromised individuals from being exposed to molds and fungi outside the confines of hospital isolation units. Some molds that propagate indoors may under some conditions produce mycotoxins that can adversely affect living cells and organisms by a variety of mechanisms. Adverse effects of molds and mycotoxins have been recognized for centuries following ingestion of contaminated foods. Occupational diseases are also recognized in association with inhalation exposure to fungi, bacteria, and other organic matter, usually in industrial or agricultural settings. Molds growing indoors are believed by some to cause building-related symptoms. Despite a voluminous literature on the subject, the causal association remains weak and unproven, particularly with respect to causation by mycotoxins. One mold in particular, Stachybotrys chartarum, is blamed for a diverse array of maladies when it is found indoors. Despite its well-known ability to produce mycotoxins under appropriate growth conditions, years of intensive study have failed to establish exposure to S. chartarum in home, school, or office environments as a cause of adverse human health effects. Levels of exposure in the indoor environment, dose-response data in animals, and dose-rate considerations suggest that delivery by the inhalation route of a toxic dose of mycotoxins in the indoor environment is highly unlikely at best, even for the hypothetically most vulnerable subpopulations. Mold spores are present in all indoor environments and cannot be eliminated from them. Normal building materials and furnishings provide ample nutrition for many species of molds, but they can grow and amplify indoors only when there is an adequate supply of moisture. Where mold grows indoors there is an inappropriate source of water that must be corrected before remediation of the mold colonization can succeed. Mold growth in the home, school, or office environment should not be tolerated because mold physically destroys the building materials on which it grows, mold growth is unsightly and may produce offensive odors, and mold is likely to sensitize and produce allergic responses in allergic individuals. Except for persons with severely impaired immune systems, indoor mold is not a source of fungal infections. Current scientific evidence does not support the proposition that human health has been adversely affected by inhaled mycotoxins in home, school, or office environments.


Subject(s)
Air Pollution, Indoor/adverse effects , Fungi/pathogenicity , Hypersensitivity , Mycoses , Mycotoxins , Respiratory Hypersensitivity , Environmental Exposure , Humans , Hypersensitivity/etiology , Hypersensitivity/immunology , Hypersensitivity/physiopathology , Mycoses/etiology , Mycoses/immunology , Mycoses/physiopathology , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/physiopathology
15.
Appl Occup Environ Hyg ; 17(7): 491-4, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12083169

ABSTRACT

Exposure of workers to diisocyanates in the polyurethane foam manufacturing industry is well documented. However, very little quantitative data have been published on exposure to diisocyanates from the use of paints and coatings. The purpose of this study was to evaluate emission of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate (2,6-TDI), and isophorone diisocyanate from a commercially available two-stage concrete coating and sealant. A laboratory model of an outdoor deck coating process was developed and diisocyanate concentrations determined by derivatization with 1-(2-methoxyphenol)-piperazine and subsequent high performance liquid chromatographic analysis with UV detection. The detection limit for 2,4-toluene diisocyanate and 2,6-toluene diisocyanate urea derivatives was 0.6 microg TDI/gm wet product, and 0.54 microg IPDI/gm wet product for the isophorone diisocyanate urea derivative. No 2,4-toluene diisocyanate or isophorone diisocyanate was detected in the mixed product. A maximum mean 2,6-TDI emission rate of 0.32 microg of 2,6-TDI/gram of wet product applied/hour was observed for the 1-hour sampling time, 0.38 microg of 2,6-TDI/gram of wet product applied/hour was observed for the 5-hour sampling time, and 0.02 micrpg of 2,6-TDI/gram of wet product applied/hour was observed for the 15-hour sampling time. The decrease in rate of 2,6-TDI emission over the 15-hour period indicates that emission of 2,6-TDI is virtually complete after 5 hours. These emission rates should allow industrial hygienists to calculate exposures to isocyanates emitted from at least one curing sealant.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Occupational Exposure/analysis , Paint/analysis , Toluene 2,4-Diisocyanate/analysis , Chemical Industry , Humans , Occupational Health , Sampling Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...