Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 120(17): 3577-3587, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34358526

ABSTRACT

To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.


Subject(s)
Catechol O-Methyltransferase , Quantum Theory , Catalytic Domain , Catechol O-Methyltransferase/metabolism , Cheminformatics , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...