Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 300(1-2): 1-11, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22609517

ABSTRACT

Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of 'active' developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine >50ng/mL) characterized by low birth weight offspring, the impact of developmental CSE on liver protein abundances was determined. On PD21, liver tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Protein spots of interest were identified by ESI-MS/MS with impacted molecular pathways identified by Ingenuity Pathway Analysis. Developmental CSE decreased the abundance of proteins associated with the small molecule biochemistry (includes glucose metabolism), lipid metabolism, amino acid metabolism, and inflammatory response pathways. Decreased gluconeogenic enzyme activity and lysophosphatidylcholine availability following developmental CSE were found and supports the impact of CSE on these pathways. Proteins with increased abundance belonged to the cell death and drug metabolism networks. Liver antioxidant enzyme abundances [glutathione-S-transferase (GST) and peroxiredoxins] were also altered by CSE, but GST enzymatic activity was unchanged. In summary, cigarette smoke exposure spanning pre- and post-natal development resulted in persistent decreased offspring weights, decreased abundances of liver metabolic proteins, decreased gluconeogenic activity, and altered lipid metabolism. The companion paper details the kidney proteome alterations in the same offspring.


Subject(s)
Liver/drug effects , Proteome/analysis , Tobacco Smoke Pollution/adverse effects , Animals , Animals, Newborn/blood , Animals, Newborn/growth & development , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Female , Gluconeogenesis/drug effects , Inhalation Exposure/adverse effects , Liver/chemistry , Liver/enzymology , Male , Mass Spectrometry , Metabolome/drug effects , Mice , Mice, Inbred C57BL
2.
Toxicology ; 291(1-3): 43-50, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22056650

ABSTRACT

In urban areas with a predominance of early to mid-20th century housing stock, islands of children possessing blood lead levels (PbB) in excess of CDC guidelines (>10µg/dL) exist. Many of these children are also exposed to environmental tobacco smoke (ETS). The current study examined the impact of Pb-exposure (PbB levels of 1-55µg/dL) with/without concurrent ETS exposure on immune system function in 318 children aged 6-84 months from the urban area of Springfield-Greene County, MO. In this population, 36.5% of children possessed PbB levels >10µg/dL, 62.9% of children came from smoking homes, 51.9% of children were under 2 years of age, and the population was WIC eligible and predominantly of white, non-Hispanic ethnicity. Multiple immune function markers including cell counts, IgE levels, sCD25 (sIL2R) and IL4 concentrations, and titers to common childhood immunizations were analyzed for correlation with Pb and/or ETS exposure. Increased IgE levels (p<0.01) were found in children with PbB levels within CDC Classes II-IV - this finding was primarily attributable to elevated IgE levels in the subpopulation of children with concurrent Pb and ETS exposure. A trend (0.05

Subject(s)
Immunoglobulin E/metabolism , Lead Poisoning/immunology , Tobacco Smoke Pollution/adverse effects , Antibodies, Viral/analysis , Biomarkers/analysis , Cell Count , Child , Child, Preschool , Cytokines/biosynthesis , Ethnicity , Female , Humans , Image Cytometry , Immunoglobulin E/analysis , Infant , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-4/blood , Lead/blood , Male , Missouri , Rubella/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...