Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L345-L357, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36692165

ABSTRACT

E-cigarette consumption is under scrutiny by regulatory authorities due to concerns about product toxicity, lack of manufacturing standards, and increasing reports of e-cigarette- or vaping-associated acute lung injury. In vitro studies have demonstrated cytotoxicity, mitochondrial dysfunction, and oxidative stress induced by unflavored e-cigarette aerosols and flavoring additives. However, e-cigarette effects on the complex lung parenchyma remain unclear. Herein, the impact of e-cigarette condensates with or without menthol flavoring on functional, structural, and cellular responses was investigated using mouse precision cut lung slices (PCLS). PCLS were exposed to e-cigarette condensates prepared from aerosolized vehicle, nicotine, nicotine + menthol, and menthol e-fluids at doses from 50 to 500 mM. Doses were normalized to the glycerin content of vehicle. Video-microscopy of PCLS revealed impaired contractile responsiveness of airways to methacholine and dampened ciliary beating following exposure to menthol-containing condensates at concentrations greater than 300 mM. Following 500 mM menthol-containing condensate exposure, epithelial exfoliation in intrabronchial airways was identified in histological sections of PCLS. Measurement of lactate dehydrogenase release, mitochondrial water-soluble-tetrazolium salt-1 conversion, and glutathione content supported earlier findings of nicotine or nicotine + menthol e-cigarette-induced dose-dependent cytotoxicity and oxidative stress responses. Evaluation of PCLS metabolic activity revealed dose-related impairment of mitochondrial oxidative phosphorylation and glycolysis after exposure to menthol-containing condensates. Taken together, these data demonstrate prominent menthol-induced pulmonary toxicity and impairment of essential physiological functions in the lung, which warrants concerns about e-cigarette consumer safety and emphasizes the need for further investigations of molecular mechanisms of toxicity and menthol effects in an experimental model of disease.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine , Animals , Mice , Nicotine/toxicity , Menthol/toxicity , Respiratory Aerosols and Droplets , Lung , Flavoring Agents/toxicity
2.
Regul Toxicol Pharmacol ; 116: 104761, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32768664

ABSTRACT

4-Methylimidazole (4MEI) is a contaminant in food and consumer products. Pulmonary toxicity and carcinogenicity following chronic dietary exposures to 4MEI is a regulatory concern based on previous rodent studies. This study examined acute pulmonary toxicity in B6C3F1 mice from 6 h to 5 days after oral gavage with a single dose of 150 mg/kg 4MEI, a double dose delivered 6 h apart, or vehicle controls. Oral gavage of 150 mg/kg naphthalene, a prototypical Club cell toxicant, was used as a positive control. Intrapulmonary conducting airway cytotoxicity was assessed in fixed-pressure inflated lungs using qualitative histopathology scoring, quantitative morphometric measurement of vacuolated and exfoliating epithelial cells, and immunohistochemistry. 4MEI treatment did not change markers of cytotoxicity including the mass of vacuolated epithelium, the thickness of the epithelium, or the distributions of epithelial proteins: secretoglobin 1A1, proliferating cell nuclear antigen, calcitonin gene-related peptide, and myeloperoxidase. 4MEI and vehicle controls caused slight cytotoxicity with rare vacuolization of the epithelium relative to the severe bronchiolar epithelial cell toxicity found in the naphthalene exposed mice at terminal bronchioles, intrapulmonary airways, or airway bifurcations. In summary, 4MEI caused minimal airway epithelial toxicity without characteristic Club Cell toxicity when compared to naphthalene, a canonical Club Cell toxicant.


Subject(s)
Environmental Pollutants/toxicity , Imidazoles/toxicity , Naphthalenes/toxicity , Respiratory Mucosa/drug effects , Administration, Oral , Animals , Female , Male , Mice , Respiratory Mucosa/pathology
3.
Curr Protoc Toxicol ; 71: 24.5.1-24.5.26, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146282

ABSTRACT

This unit focuses on protocols for assessing microenvironment-specific responses in the thoracic lung tissues. Aspects of the entire respiratory system serve as potential targets for candidate toxicants, but each candidate toxicant may impact distinct sites due to differential distribution of either the toxicant or the target cells. Within the conducting airways, the composition of resident cell populations and the metabolic capabilities of the cell populations vary greatly. Thus, studies of this region of the lung require unique, site-selective methods to clearly define the toxic response. Without site-specific sampling, as described in this chapter, the experimental limit of detection for toxicant effects in conducting airways is weakened because differences unrelated to treatment, but related to location, may dominate the response. The protocols included here allow assessment of toxicological responses in the tracheobronchial airways and the gas exchange area of the lung, with specific application to laboratory mammals. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Lung/drug effects , Toxicity Tests , Animals , Bronchi/drug effects , Bronchi/metabolism , Bronchi/pathology , Lung/metabolism , Lung/pathology , Mice , Rats , Trachea/drug effects , Trachea/metabolism , Trachea/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...