Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
J Infect Dev Ctries ; 18(4): 600-608, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728644

ABSTRACT

INTRODUCTION: Human Mpox (formerly monkeypox) infection is an emerging zoonotic disease caused by the Mpox virus (MPXV). We describe the complete genome annotation, phylogeny, and mutational profile of a novel, sustained Clade I Mpox outbreak in the city of Kamituga in Eastern Democratic Republic of the Congo (DRC). METHODOLOGY: A cross-sectional, observational, cohort study was performed among patients of all ages admitted to the Kamituga Hospital with Mpox infection symptoms between late September 2023 and late January 2024. DNA was isolated from Mpox swabbed lesions and sequenced followed by phylogenetic analysis, genome annotation, and mutational profiling. RESULTS: We describe an ongoing Clade I Mpox outbreak in the city of Kamituga, South Kivu Province, Democratic Republic of Congo. Whole-genome sequencing of the viral RNA samples revealed, on average, 201.5 snps, 28 insertions, 81 deletions, 2 indels, 312.5 total variants, 158.3 amino acid changes, 81.66 intergenic variants, 72.16 synonymous mutations, 106 missense variants, 41.16 frameshift variants, and 3.33 inframe deletions across six samples. By assigning mutations at the proteome level for Kamituga MPXV sequences, we observed that seven proteins, namely, C9L (OPG047), I4L (OPG080), L6R (OPG105), A17L (OPG143), A25R (OPG151), A28L (OPG153), and B21R (OPG210) have emerged as hot spot mutations based on the consensuses inframe deletions, frameshift variants, synonymous variants, and amino acids substitutions. Based on the outcome of the annotation, we found a deletion of the D14L (OPG032) gene in all six samples. Following phylogenetic analysis and whole genome assembly, we determined that this cluster of Mpox infections is genetically distinct from previously reported Clade I outbreaks, and thus propose that the Kamituga Mpox outbreak represents a novel subgroup (subgroup VI) of Clade I MPXV. CONCLUSIONS: Here we report the complete viral genome for the ongoing Clade I Mpox Kamituga outbreak for the first time. This outbreak presents a distinct mutational profile from previously sequenced Clade I MPXV oubtreaks, suggesting that this cluster of infections is a novel subgroup (we term this subgroup VI). These findings underscore the need for ongoing vigilance and continued sequencing of novel Mpox threats in endemic regions.


Subject(s)
Genome, Viral , Monkeypox virus , Mpox (monkeypox) , Phylogeny , Whole Genome Sequencing , Humans , Democratic Republic of the Congo/epidemiology , Cross-Sectional Studies , Monkeypox virus/genetics , Monkeypox virus/classification , Male , Mpox (monkeypox)/virology , Mpox (monkeypox)/epidemiology , Female , Adult , Disease Outbreaks , Mutation , Adolescent , Young Adult , Child , Child, Preschool , Middle Aged , Cohort Studies
2.
Vaccine ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38769033

ABSTRACT

The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.

3.
Sci Rep ; 14(1): 9854, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684819

ABSTRACT

Post-acute sequelae of COVID-19 (PASC) or the continuation of COVID-19 (Coronavirus disease 2019) symptoms past 12 weeks may affect as many as 30% of people recovering from a SARS-CoV-2 (severe acute respiratory coronavirus 2) infection. The mechanisms regulating the development of PASC are currently not known; however, hypotheses include virus reservoirs, pre-existing conditions, microblood clots, immune dysregulation, as well as poor antibody responses. Importantly, virus neutralizing antibodies are essential for COVID-19 recovery and protection from reinfection but there is currently limited information on these immune regulators and associated cytokines in PASC patients. Understanding the key drivers of general and specific symptoms associated with Long COVID and the presence of virus neutralizing antibodies in PASC will aid in the development of therapeutics, diagnostics, and vaccines which currently do not exist. We designed a cross-sectional study to investigate systemic antibody and cytokine responses during COVID-19 recovery and PASC. In total, 195 participants were recruited in one of four groups: (1) Those who never had COVID-19 (No COVID); (2) Those in acute COVID-19 recovery (Acute Recovery) (4-12 weeks post infection); (3) Those who recovered from COVID-19 (Recovered) (+ 12 weeks from infection); and (4) those who had PASC (PASC) (+ 12 weeks from infection). Participants completed a questionnaire on health history, sex, gender, demographics, experiences with COVID-19 acute and COVID-19 recovery/continuing symptoms. Serum samples collected were evaluated for antibody binding to viral proteins, virus neutralizing antibody titers, and serum cytokine levels using Ella SimplePlex Immunoassay™ panels. We found participants with PASC reported more pre-existing conditions (e.g. such as hypertension, asthma, and obesity), and PASC symptoms (e.g. fatigue, brain fog, headaches, and shortness of breath) following COVID-19 than COVID-19 Recovered individuals. Importantly, we found PASC individuals to have significantly decreased levels of neutralizing antibodies toward both SARS-CoV-2 and the Omicron BA.1 variant. Sex analysis indicated that female PASC study participants had sustained antibody levels as well as levels of the inflammatory cytokines GM-CSF and ANG-2 over time following COVID-19. Our study reports people experiencing PASC had lower levels of virus neutralizing antibodies; however, the results are limited by the collection time post-COVID-19 and post-vaccination. Moreover, we found females experiencing PASC had sustained levels of GM-CSF and ANG-2. With lower levels of virus neutralizing antibodies, this data suggests that PASC individuals not only have had a suboptimal antibody response during acute SARS-CoV-2 infection but may also have increased susceptibility to subsequent infections which may exacerbate or prolong current PASC illnesses. We also provide evidence suggesting GM-CSF and ANG-2 to play a role in the sex-bias of PASC. Taken together, our findings maybe important for understanding immune molecular drivers of PASC and PASC subgroups.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Granulocyte-Macrophage Colony-Stimulating Factor , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross-Sectional Studies , Post-Acute COVID-19 Syndrome , Aged , Sex Factors , Angiotensin-Converting Enzyme 2/metabolism
4.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115191

ABSTRACT

The omicron (B.1.19) variant of contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a variant of concern (VOC) due to its increased transmissibility and highly infectious nature. The spike receptor-binding domain (RBD) is a hotspot of mutations and is regarded as a prominent target for screening drug candidates owing to its crucial role in viral entry and immune evasion. To date, no effective therapy or antivirals have been reported; therefore, there is an urgent need for rapid screening of antivirals. An extensive molecular modelling study has been performed with the primary goal to assess the inhibition potential of natural flavonoids as inhibitors against RBD from a manually curated library. Out of 40 natural flavonoids, five natural flavonoids, namely tomentin A (-8.7 kcal/mol), tomentin C (-8.6 kcal/mol), hyperoside (-8.4 kcal/mol), catechin gallate (-8.3 kcal/mol), and corylifol A (-8.2 kcal/mol), have been considered as the top-ranked compounds based on their binding affinity and molecular interaction profiling. The state-of-the-art molecular dynamics (MD) simulations of these top-ranked compounds in complex with RBD exhibited stable dynamics and structural compactness patterns on 200 nanoseconds. Additionally, complexes of these molecules demonstrated favorable free binding energies and affirmed the docking and simulation results. Moreover, the post-simulation validation of these interacted flavonoids using principal component analysis (PCA) revealed stable interaction patterns with RBD. The integrated results suggest that tomentin A, tomentin C, hyperoside, catechin gallate, and corylifol A might be effective against the emerging variants of SARS-CoV-2 and should be further evaluated using in-vitro and in-vivo experiments.Communicated by Ramaswamy H. Sarma.

5.
iScience ; 26(10): 107959, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810226

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing COVID-19 (coronavirus disease 2019) poses a greater health risk to immunocompromized individuals including people living with HIV (PLWH). However, most studies on PLWH have been conducted in higher-income countries. We investigated the post-vaccination antibody responses of PLWH in Rwanda by collecting peripheral blood from participants after receiving a second or third COVID-19 vaccine. Virus-binding antibodies as well as antibody neutralization ability against all major SARS-CoV-2 variants of concern were analyzed. We found that people with high HIV viral loads and two COVID-19 vaccine doses had lower levels of binding antibodies that were less virus neutralizing and less cross-reactive compared to control groups. A third vaccination increased neutralizing antibody titers. Our data suggest that people with high HIV viral loads require a third dose of vaccine to neutralize SARS-CoV-2 virus and new variants as they emerge.

6.
Nat Commun ; 14(1): 5990, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752151

ABSTRACT

SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Male , Animals , Cricetinae , Humans , SARS-CoV-2 , Mesocricetus , COVID-19 Vaccines , Seasons
7.
Am J Physiol Heart Circ Physiol ; 325(5): H1153-H1167, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37737732

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection damages the heart, increasing the risk of adverse cardiovascular events. Female sex protects against complications of infection; females are less likely to experience severe illness or death, although their risk for postacute sequelae of COVID-19 ("long COVID") is higher than in males. Despite the important role of the heart in COVID-19 outcomes, molecular elements in the heart impacted by SARS-CoV-2 are poorly understood. Similarly, the role sex has on the myocardial effects of SARS-CoV-2 infection has not been investigated at a molecular level. We intranasally inoculated female and male ferrets with SARS-CoV-2 and assessed myocardial stress signals, inflammation, and the innate immune response for 14 days. Myocardial phosphorylated GSK3α/ß decreased at day 2 postinfection (pi) in male ferrets, whereas females showed no changes. Myocardial levels of p62/SQSTM1 decreased in male ferrets at days 2, 7, and 14 pi while lower baseline levels in females increased on day 2. Phosphorylated ERK1/2 increased in cardiomyocyte nuclei in females on days 2 and 14 pi, whereas male ferrets had no changes. Only hearts from females increased fibrosis on day 14 pi. Immune and inflammation markers increased in hearts, with some sex differences. These results are the first to identify myocardial stress responses following SARS-CoV-2 infection and reveal sex differences that may contribute to differential outcomes. Future research is required to define the pathways involving these stress signals to fully understand the myocardial effects of COVID-19 and identify targets that mitigate cardiac injury following SARS-CoV-2 infection.NEW & NOTEWORTHY Cardiovascular disease is a leading risk factor for severe COVID-19, and cardiovascular pathologies are among the most common adverse outcomes following SARS-CoV-2 infection. Females and males have different outcomes and adverse cardiovascular events following SARS-CoV-2 infection. This study shows sex differences in stress proteins p62/SQSTM1, ERK1/2, and GSK3α/ß, along with innate immunity and inflammation in hearts of ferrets infected with SARS-CoV-2, identifying mechanisms of COVID-19 cardiac injury and cardiac complications of long COVID.


Subject(s)
COVID-19 , Cardiovascular Diseases , Female , Male , Animals , Humans , SARS-CoV-2 , Ferrets , Post-Acute COVID-19 Syndrome , Sex Characteristics , Sequestosome-1 Protein , Inflammation
8.
Viruses ; 15(9)2023 09 14.
Article in English | MEDLINE | ID: mdl-37766327

ABSTRACT

With the emergence of the novel betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there has been an urgent need for the development of fast-acting antivirals, particularly in dealing with different variants of concern (VOC). SARS-CoV-2, like other RNA viruses, depends on host cell machinery to propagate and misregulate metabolic pathways to its advantage. Herein, we discovered that the immunometabolic microRNA-185 (miR-185) restricts SARS-CoV-2 propagation by affecting its entry and infectivity. The antiviral effects of miR-185 were studied in SARS-CoV-2 Spike protein pseudotyped virus, surrogate virus (HCoV-229E), as well as live SARS-CoV-2 virus in Huh7, A549, and Calu-3 cells. In each model, we consistently observed microRNA-induced reduction in lipid metabolism pathways-associated genes including SREBP2, SQLE, PPARG, AGPAT3, and SCARB1. Interestingly, we also observed changes in angiotensin-converting enzyme 2 (ACE2) levels, the entry receptor for SARS-CoV-2. Taken together, these data show that miR-185 significantly restricts host metabolic and other pathways that appear to be essential to SAR-CoV-2 replication and propagation. Overall, this study highlights an important link between non-coding RNAs, immunometabolic pathways, and viral infection. miR-185 mimics alone or in combination with other antiviral therapeutics represent possible future fast-acting antiviral strategies that are likely to be broadly antiviral against multiple variants as well as different virus types of potential pandemics.


Subject(s)
COVID-19 , MicroRNAs , Humans , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , MicroRNAs/genetics , Lipids
9.
Front Genet ; 14: 1221683, 2023.
Article in English | MEDLINE | ID: mdl-37274782

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2023.1175408.].

10.
Front Genet ; 14: 1175408, 2023.
Article in English | MEDLINE | ID: mdl-37274788

ABSTRACT

Understanding the genetic structure of the target population is critically important to develop an efficient genomic selection program in domestic animals. In this study, 2,973 American mink of six color types from two farms (Canadian Centre for Fur Animal Research (CCFAR), Truro, NS and Millbank Fur Farm (MFF), Rockwood, ON) were genotyped with the Affymetrix Mink 70K panel to compute their linkage disequilibrium (LD) patterns, effective population size (Ne), genetic diversity, genetic distances, and population differentiation and structure. The LD pattern represented by average r 2, decreased to <0.2 when the inter-marker interval reached larger than 350 kb and 650 kb for CCFAR and MFF, respectively, and suggested at least 7,700 and 4,200 single nucleotide polymorphisms (SNPs) be used to obtain adequate accuracy for genomic selection programs in CCFAR and MFF respectively. The Ne for five generations ago was estimated to be 76 and 91 respectively. Our results from genetic distance and diversity analyses showed that American mink of the various color types had a close genetic relationship and low genetic diversity, with most of the genetic variation occurring within rather than between color types. Three ancestral genetic groups was considered the most appropriate number to delineate the genetic structure of these populations. Black (in both CCFAR and MFF) and pastel color types had their own ancestral clusters, while demi, mahogany, and stardust color types were admixed with the three ancestral genetic groups. This study provided essential information to utilize the first medium-density SNP panel for American mink in their genomic studies.

11.
Front Microbiol ; 14: 1148255, 2023.
Article in English | MEDLINE | ID: mdl-37065160

ABSTRACT

The ongoing evolution of SARS-CoV-2 continues to raise new questions regarding the duration of immunity to reinfection with emerging variants. To address these knowledge gaps, controlled investigations in established animal models are needed to assess duration of immunity induced by each SARS-CoV-2 lineage and precisely evaluate the extent of cross-reactivity and cross-protection afforded. Using the Syrian hamster model, we specifically investigated duration of infection acquired immunity to SARS-CoV-2 ancestral Wuhan strain over 12 months. Plasma spike- and RBD-specific IgG titers against ancestral SARS-CoV-2 peaked at 4 months post-infection and showed a modest decline by 12 months. Similar kinetics were observed with plasma virus neutralizing antibody titers which peaked at 2 months post-infection and showed a modest decline by 12 months. Reinfection with ancestral SARS-CoV-2 at regular intervals demonstrated that prior infection provides long-lasting immunity as hamsters were protected against severe disease when rechallenged at 2, 4, 6, and 12 months after primary infection, and this coincided with the induction of high virus neutralizing antibody titers. Cross-neutralizing antibody titers against the B.1.617.2 variant (Delta) progressively waned in blood over 12 months, however, re-infection boosted these titers to levels equivalent to ancestral SARS-CoV-2. Conversely, cross-neutralizing antibodies to the BA.1 variant (Omicron) were virtually undetectable at all time-points after primary infection and were only detected following reinfection at 6 and 12 months. Collectively, these data demonstrate that infection with ancestral SARS-CoV-2 strains generates antibody responses that continue to evolve long after resolution of infection with distinct kinetics and emergence of cross-reactive and cross-neutralizing antibodies to Delta and Omicron variants and their specific spike antigens.

12.
J Cell Biochem ; 124(5): 701-715, 2023 05.
Article in English | MEDLINE | ID: mdl-36946432

ABSTRACT

Mpox (formerly Monkeypox), a zoonotic illness caused by the Mpox virus, belongs to the Orthopoxvirus genus in the family Poxviridae. To design and develop effective antiviral therapeutics against DNA viruses, the DNA-dependent RNA polymerase (DdRp) of poxviruses has emerged as a promising drug target. In the present study, we modeled the three-dimensional (3D) structure of DdRp using a template-based homology approach. After modeling, virtual screening was performed to probe the molecular interactions between 1755 Food and Drug Administration-approved small molecule drugs (≤500 molecular weight) and the DdRp of Mpox. Based on the binding affinity and molecular interaction patterns, five drugs, lumacaftor (-11.7 kcal/mol), conivaptan (-11.7 kcal/mol), betulinic acid (-11.6 kcal/mol), fluspirilene (-11.3 kcal/mol), and imatinib (-11.2 kcal/mol), have been ranked as the top drug compounds interacting with Mpox DdRp. Complexes of these shortlisted drugs with DdRp were further evaluated using state-of-the-art all-atoms molecular dynamics (MD) simulations on 200 nanoseconds followed by principal component analysis (PCA). MD simulations and PCA results revealed highly stable interactions of these small drugs with DdRp. After due validation in wet-lab using available in vitro and in vivo experiments, these repurposed drugs can be further utilized for the treatment of contagious Mpox virus. The outcome of this study may establish a solid foundation to screen repurposed and natural compounds as potential antiviral therapeutics against different highly pathogenic viruses.


Subject(s)
Drug Repositioning , Mpox (monkeypox) , Humans , DNA-Directed RNA Polymerases , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
14.
J Anim Sci ; 100(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36250683

ABSTRACT

The ineffectiveness of vaccination, medicine, and culling strategy leads mink farmers to control Aleutian disease (AD) by selecting AD-resilient mink based on AD tests. However, the genetic background of AD tests and their correlations with economically important or AD-resilient traits are limited. This study estimated the genetic and phenotypic correlations between four AD tests and seven body weight (BW) traits, six growth parameters from the Richards growth model, and eight feed-related traits. Univariate models were used to test the significance (P < 0.05) of fixed effects (sex, color type, AD test year, birth year, and row-by-year), random effects (additive genetic, maternal genetic, and permanent environmental), and a covariate of age using ASReml 4.1. Likewise, pairwise bivariate analyses were conducted to estimate the phenotypic and genetic correlations among the studied traits. Both antigen- and virus capsid protein-based enzyme-linked immunosorbent assay tests (ELISA-G and ELISA-P) showed significant (P < 0.05) moderate positive genetic correlations (±SE) with maturation rate (from 0.36 ± 0.18 to 0.38 ± 0.19). ELISA-G showed a significant negative genetic correlation (±SE) with average daily gain (ADG, -0.37 ± 0.16). ELISA-P showed a significant positive moderate genetic correlation (±SE) with off-feed days (DOF, 0.42 ± 0.17). These findings indicated that selection for low ELISA scores would reduce the maturation rate, increase ADG (by ELISA-G), and minimize DOF (by ELISA-P). The iodine agglutination test (IAT) showed significant genetic correlations with DOF (0.73 ± 0.16), BW at 16 weeks of age (BW16, 0.45 ± 0.23), and BW at harvest (HW, -0.47 ± 0.20), indicating that selection for lower IAT scores would lead to lower DOF and BW16, and higher HW. These estimated genetic correlations suggested that the selection of AD tests would not cause adverse effects on the growth, feed efficiency, and feed intake of mink. The estimates from this study might strengthen the previous finding that ELISA-G could be applied as a reliable and practical indicator trait in the genetic selection of AD-resilient mink in AD-positive farms.


The selection of Aleutian disease-resistant individuals based on Aleutian disease (AD) tests is seen as a potential method to control AD effectively. However, the knowledge regarding the genetic background of AD tests is limited. This study estimated the genetic and phenotypic correlations between Aleutian disease tests and body weight, growth, and feed-related traits in mink. The estimates in this study indicated that the growth, feed efficiency, and feed intake of mink would not be adversely influenced by the selection of AD tests. In the meantime, the estimates further illustrate that the antigen-based enzyme-linked immunosorbent assay test could be applied as the most reliable and practical indicator trait to select AD-resilient mink in AD-positive farms.


Subject(s)
Aleutian Mink Disease , Mink , Animals , Mink/genetics , Aleutian Mink Disease/genetics , Body Weight/genetics , Phenotype , Eating
15.
PLoS Pathog ; 18(9): e1010741, 2022 09.
Article in English | MEDLINE | ID: mdl-36070309

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.


Subject(s)
COVID-19 , Animals , COVID-19/complications , Cricetinae , Ferrets , Humans , Mesocricetus , Mice , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
16.
EClinicalMedicine ; 37: 100975, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34222846

ABSTRACT

BACKGROUND: The SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) has led to more than 165 million COVID-19 cases and >3.4 million deaths worldwide. Epidemiological analysis has revealed that the risk of developing severe COVID-19 increases with age. Despite a disproportionate number of older individuals and long-term care facilities being affected by SARS-CoV-2 and COVID-19, very little is understood about the immune responses and development of humoral immunity in the extremely old person after SARS-CoV-2 infection. Here we conducted a serological study to investigate the development of humoral immunity in centenarians following a SARS-CoV-2 outbreak in a long-term care facility. METHODS: Extreme aged individuals and centenarians who were residents in a long-term care facility and infected with or exposed to SARS-CoV-2 were investigated between April and June 2020 for the development of antibodies to SARS-CoV-2. Blood samples were collected from positive and bystander individuals 30 and 60 days after original diagnosis of SARS-CoV-2 infection. Plasma was used to quantify IgG, IgA, and IgM isotypes and subsequent subclasses of antibodies specific for SARS-CoV-2 spike protein. The function of anti-spike was then assessed by virus neutralization assays against the native SARS-CoV-2 virus. FINDINGS: Fifteen long-term care residents were investigated for SARS-CoV-2 infection. All individuals had a Clinical Frailty scale score ≥5 and were of extreme older age or were centenarians. Six women with a median age of 98.8 years tested positive for SARS-CoV-2. Anti-spike IgG antibody titers were the highest titers observed in our cohort with all IgG positive individuals having virus neutralization ability. Additionally, 5 out of the 6 positive participants had a robust IgA anti-SARS-CoV-2 response. In all 5, antibodies were detected after 60 days from initial diagnosis.

17.
Sci Rep ; 11(1): 14536, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267262

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and older ages. Here we investigated the impact of male sex and age comparing sex-matched or age-matched ferrets infected with SARS-CoV-2. Differences in temperature regulation was identified for male ferrets which was accompanied by prolonged viral replication in the upper respiratory tract after infection. Gene expression analysis of the nasal turbinates indicated that 1-year-old female ferrets had significant increases in interferon response genes post infection which were delayed in males. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.


Subject(s)
COVID-19/virology , Ferrets/virology , Interferons/metabolism , Age Factors , Animals , Antibodies, Viral , COVID-19/metabolism , Disease Models, Animal , Female , Ferrets/metabolism , Host Microbial Interactions , Interferons/genetics , Male , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sex Factors , Viral Load , Virus Replication
18.
Viruses ; 13(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33920917

ABSTRACT

Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.


Subject(s)
Ferrets/virology , Immunity , Orthomyxoviridae Infections/virology , Age Factors , Animals , Female , Humans , Influenza Vaccines , Pregnancy , Risk Factors , Vaccination
19.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536277

ABSTRACT

Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Disease Susceptibility , SARS-CoV-2/physiology , Animals , COVID-19 Vaccines/adverse effects , Disease Models, Animal , Humans , Phylogeny
20.
bioRxiv ; 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33469587

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and the elderly. Here we investigated the impact of male sex and age by infecting adult male, aged male, and adult female ferrets with SARS-CoV-2. Aged male ferrets had a decrease in temperature which was accompanied by prolonged viral replication with increased pathology in the upper respiratory tract after infection. Transcriptome analysis of the nasal turbinates and lungs indicated that female ferrets had significant increases in interferon response genes (OASL, MX1, ISG15, etc.) on day 2 post infection which was delayed in aged males. In addition, genes associated with taste and smell such as RTP1, CHGA, and CHGA1 at later time points were upregulated in males but not in females. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...