Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 14(5): e3518, 2024 May.
Article in English | MEDLINE | ID: mdl-38698619

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the functional changes associated with mild cognitive impairment (MCI) using independent component analysis (ICA) with the word generation task functional magnetic resonance imaging (fMRI) and resting-state fMRI. METHODS: In this study 17 patients with MCI and age and education-matched 17 healthy individuals as control group are investigated. All participants underwent resting-state fMRI and task-based fMRI while performing the word generation task. ICA was used to identify the appropriate independent components (ICs) and their associated networks. The Dice Coefficient method was used to determine the relevance of the ICs to the networks of interest. RESULTS: IC-14 was found relevant to language network in both resting-state and task-based fMRI, IC-4 to visual, and IC-28 to dorsal attention network (DAN) in word generation task-based fMRI by Sorento-Dice Coefficient. ICA showed increased activation in language network, which had a larger voxel size in resting-state functional MRI than word generation task-based fMRI in the bilateral lingual gyrus. Right temporo-occipital fusiform cortex, right hippocampus, and right thalamus were also activated in the task-based fMRI. Decreased activation was found in DAN and visual network MCI patients in word generation task-based fMRI. CONCLUSION: Task-based fMRI and ICA are more sophisticated and reliable tools in evaluation cognitive impairments in language processing. Our findings support the neural mechanisms of the cognitive impairments in MCI.


Subject(s)
Cognitive Dysfunction , Language , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Aged , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain Mapping/methods , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology
2.
CNS Neurosci Ther ; 30(2): e14371, 2024 02.
Article in English | MEDLINE | ID: mdl-37475197

ABSTRACT

BACKGROUND: Amnestic mild cognitive impairment (aMCI) is a transitional state between normal aging and dementia, and identifying early biomarkers is crucial for disease detection and intervention. Functional magnetic resonance imaging (fMRI) has the potential to identify changes in neural activity in MCI. METHODS: We investigated neural activity changes in the visual network of the aMCI patients (n:20) and healthy persons (n:17) using resting-state fMRI and visual oddball task fMRI. We used independent component analysis to identify regions of interest and compared the activity between groups using a false discovery rate correction. RESULTS: Resting-state fMRI revealed increased activity in the areas that have functional connectivity with the visual network, including the right superior and inferior lateral occipital cortex, the right angular gyrus and the temporo-occipital part of the right middle temporal gyrus (p-FDR = 0.008) and decreased activity in the bilateral thalamus and caudate nuclei, which are part of the frontoparietal network in the aMCI group (p-FDR = 0.002). In the visual oddball task fMRI, decreased activity was found in the right frontal pole, the right frontal orbital cortex, the left superior parietal lobule, the right postcentral gyrus, the right posterior part of the supramarginal gyrus, the right superior part of the lateral occipital cortex, and the right angular gyrus in the aMCI group. CONCLUSION: Our results suggest the alterations in the visual network are present in aMCI patients, both during resting-state and task-based fMRI. These changes may represent early biomarkers of aMCI and highlight the importance of assessing visual processing in cognitive impairment. However, future studies with larger sample sizes and longitudinal designs are needed to confirm these findings.


Subject(s)
Cognitive Dysfunction , Humans , Cognitive Dysfunction/diagnosis , Magnetic Resonance Imaging/methods , Gray Matter/pathology , Temporal Lobe/pathology , Biomarkers , Brain/pathology , Brain Mapping/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...