Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118748, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37666135

ABSTRACT

Area-based targets, such as percentages of regions protected, are popular metrics of success in the protection of nature. While easily quantified, these targets can be uninformative about the effectiveness of conservation interventions and should be complemented by program impact evaluations. However, most impact evaluations have examined the effect of protected areas on deforestation. Studies that have extended these evaluations to more dynamic systems or different outcomes are less common, largely due to data availability. In these cases, simulations might prove to be a valuable tool for gaining an understanding of the potential range of program effect sizes. Here, we employ simulations of wetland drainage to estimate the impact of the United States Fish and Wildlife Service Small Wetlands Acquisition Program (SWAP) across a ten-year period in terms of wetland area, and breeding waterfowl and brood abundance in the Prairie Pothole Region of North Dakota, South Dakota, and Montana. Using our simulation results, we estimate a plausible range of program impact for the SWAP as an avoided loss of between 0.00% and 0.02% of the carrying capacity for broods and breeding waterfowl from 2008-2017. Despite the low programmatic impact that these results suggest, the perpetual nature of SWAP governance provides promising potential for a higher cumulative conservation impact in the long term if future wetland drainage occurs.


Subject(s)
Animals, Wild , Wetlands , Animals , Computer Simulation , Montana
2.
PLoS One ; 17(1): e0262393, 2022.
Article in English | MEDLINE | ID: mdl-35045108

ABSTRACT

Unmanned aerial vehicles (UAVs) have become a popular wildlife survey tool. Most research has focused on detecting wildlife using UAVs with less known about behavioral responses. We compared the behavioral responses of breeding blue-winged teal (Spatula discors) (n = 151) and northern shovelers (Spatula clypeata) (n = 46) on wetlands flown over with a rotary DJI Matrice 200 quadcopter and control wetlands without flights. Using a GoPro camera affixed to a spotting scope, we conducted focal individual surveys and recorded duck behaviors for 30 minutes before, during, and 30 minutes after UAV flights to determine if ducks flushed or changed in specific activities. We also conducted scan surveys during flights to examine flushing and movement on the entire wetland. Between 24 April and 27 May 2020, we conducted 42 paired (control and flown) surveys. Both teal and shovelers increased proportion of time engaged in overhead vigilance on flown wetlands from pre-flight to during flight (0.008 to 0.020 and 0.006 to 0.032 of observation time, respectively). Both species left the wetland more frequently during flights than ducks on control wetlands. Despite similarities between species, we observed marked differences in time each species spent on active (e.g., feeding, courtship, swimming), resting, and vigilant behaviors during flights. Overall, teal became less active during flights (0.897 to 0.834 of time) while shovelers became more active during this period (0.724 to 0.906 of time). Based upon scan surveys, ducks flushed in 38.1% of surveys while control wetlands only had a single (2.4%) flush during the flight time. We found launch distance was the most important predictor of whether ducks swam for cover or away from the UAV which could result in inaccurate counts. Ducks appear aware of UAVs during flights, but minimal behavioral shifts suggest negative fitness consequences are unlikely.


Subject(s)
Behavior, Animal/physiology , Environmental Monitoring/methods , Unmanned Aerial Devices/ethics , Animals , Animals, Wild , Ducks , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...