Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Dent Res ; 97(6): 603-613, 2018 06.
Article in English | MEDLINE | ID: mdl-29420101

ABSTRACT

The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Genomics , Head and Neck Neoplasms/genetics , Carcinoma, Squamous Cell/therapy , Epigenesis, Genetic/genetics , Genetic Predisposition to Disease/genetics , Head and Neck Neoplasms/therapy , Humans , Molecular Targeted Therapy , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Precision Medicine
2.
Microsc Microanal ; 4(6): 622-631, 1998 Nov.
Article in English | MEDLINE | ID: mdl-10087285

ABSTRACT

: Originally designed as position-sensitive detectors for particle tracking, silicon drift detectors (SDDs) are now used for high-count rate X-ray spectroscopy, operating close to room temperature. Their low-capacitance read-node concept places them among the fastest high-resolution detector systems. They have been used in a new spectrum of experiments in the wide field of X-ray spectroscopy: fluorescent analysis, diffractometry, materials analysis, and synchrotron experiments such as X-ray holography and element imaging in scanning electron microscopes. The fact that the detector system can be used at room temperature with good spectroscopic performance and at -10 degrees C with excellent energy resolution, avoiding liquid nitrogen for cooling and high-quality vacuum, guarantees a large variety of new applications, independent of the laboratory environment. A brief description of the device principles is followed by basics on low noise amplification. The performance results of a complete detector system are presented as well as some dedicated applications already realized, including use in a surface mapping instrument and use of a "mini-spectrometer" for the analysis of works of art. Fully depleted pn-charge-coupled devices (pn-CCDs) have been fabricated for the European X-ray Multi-Mirror mission (XMM) and the German X-ray satellite ABRIXAS, enabling high-speed, low-noise, position-resolving X-ray spectroscopy. The detector was designed and fabricated with a homogeneously sensitive area of 36 cm2. At -70 degrees C it has a noise of 4 e- rms, with a readout time of the total focal plane array of 4 msec. The maximum count rate for single photon counting was 10(5) cps under flat field conditions. In the integration mode, more than 10(9) cps can be detected at 6 keV. Its position resolution is on the order of 100 µm. The quantum efficiency is higher than 90%, ranging from carbon K X-rays (277 eV) up to 10 keV.

3.
J Synchrotron Radiat ; 5(Pt 3): 268-74, 1998 May 01.
Article in English | MEDLINE | ID: mdl-15263490

ABSTRACT

For the European X-ray multi-mirror (XMM) satellite mission and the German X-ray satellite ABRIXAS, fully depleted pn-CCDs have been fabricated, enabling high-speed low-noise position-resolving X-ray spectroscopy. The detector was designed and fabricated with a homogeneously sensitive area of 36 cm(2). At 150 K it has a noise of 4 e(-) r.m.s., with a readout time of the total focal plane array of 4 ms. The maximum count rate for single-photon counting was 10(5) counts s(-1) under flat-field conditions. In the integration mode more than 10(9) counts s(-1) can be detected at 6 keV. Its position resolution is of the order of 100 micro m. The quantum efficiency is higher than 90% from carbon K X-rays (277 eV) up to 10 keV. New cylindrical silicon drift detectors have been designed, fabricated and tested. They comprise an integrated on-chip amplifier system with continuous reset, on-chip voltage divider, electron accumulation layer stabilizer, large area, homogeneous radiation entrance window and a drain for surface-generated leakage current. At count rates as high as 2 x 10(6) counts cm(-2) s(-1), they still show excellent spectroscopic behaviour at room-temperature operation in single-photon detection mode. The energy resolution at room temperature is 220 eV at 6 keV X-ray energy and 140 eV at 253 K, being achieved with Peltier coolers. These systems were operated at synchrotron light sources (ESRF, HASYLAB and NLS) as X-ray fluorescence spectrometers in scanning electron microscopes and as ultra low noise photodiodes. The operation of a multi-channel silicon drift detector system is already foreseen at synchrotron light sources for X-ray holography experiments. All systems are fabricated in planar technology having the detector and amplifiers monolithically integrated on high-resistivity silicon.

4.
IEEE Trans Med Imaging ; 5(4): 207-21, 1986.
Article in English | MEDLINE | ID: mdl-18244013

ABSTRACT

A system to analyze the chemical properties of a region of tissue located deep inside the human body without having to access it is proposed. The method is based on a high precision detection of X-rays or gamma-rays (photons) from an external source Compton scattered from the tissue under inspection. The method provides chemical information of plane regions lying not too deep inside the body (<6 cm). The amount of radiation absorbed by the body is about the same as needed for a standard X-ray tomography. The exposure time is estimated to be shorter than 10 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...