Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2610, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197169

ABSTRACT

Localized electron spins can couple magnetically via the Ruderman-Kittel-Kasuya-Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin-orbit scattering leads to a Dzyaloshinskii-Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO2 chains on Ir(100). Whereas we find antiferromagnetic Mn-Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO2 chains. Calculations reveal that the Dzyaloshinskii-Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles.

2.
Phys Rev Lett ; 120(20): 207202, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864328

ABSTRACT

We report the direct observation of a theoretically predicted magnetic ground state in a monolayer Fe on Rh(111), which is referred to as an up-up-down-down (↑↑↓↓) double-row-wise antiferromagnetic spin structure, using spin-polarized scanning tunneling microscopy. This exotic phase, which exists in three orientational domains, is revealed by experiments with magnetic probe tips performed in external magnetic fields. It is shown that a hitherto unconsidered four-spin-three-site beyond-Heisenberg interaction distinctly contributes to the spin coupling of atoms with S≥1 spins. The observation of the ↑↑↓↓ order substantiates the presence of higher-order, in particular, three-site interactions, in thin magnetic films of itinerant magnets.

3.
Nat Commun ; 7: 10949, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26971713

ABSTRACT

Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg-Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena.


Subject(s)
Iron/chemistry , Magnets/chemistry , Rhodium/chemistry , Cold Temperature , Magnetics , Microscopy, Scanning Tunneling , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...