Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Adv ; 10(15): eadm8951, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608022

ABSTRACT

CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Alleles , Down-Regulation , Peptides
2.
J Hepatol ; 77(4): 978-990, 2022 10.
Article in English | MEDLINE | ID: mdl-35636577

ABSTRACT

BACKGROUND & AIMS: In immunosuppressed patients, persistent HEV infection is common and may lead to cirrhosis and liver failure. HEV clearance depends on an effective virus-specific CD8+ T-cell response; however, the knowledge gap around HEV-specific CD8+ T-cell epitopes has hindered analysis of the mechanisms of T-cell failure in persistent infection. METHODS: We comprehensively studied HEV-specific CD8+ T-cell responses in 46 patients with self-limiting (n = 34) or chronic HEV infection (n = 12), by epitope-specific expansion, functional testing, ex vivo peptide HLA class I tetramer multi-parametric staining, and viral sequence analysis. RESULTS: We identified 25 HEV-specific CD8+ T-cell epitopes restricted by 9 different HLA class I alleles. In self-limiting HEV infection, HEV-specific CD8+ T cells were vigorous, contracted after resolution of infection, and formed functional memory responses. In contrast, in chronic infection, the HEV-specific CD8+ T-cell response was diminished, declined over time, and displayed phenotypic features of exhaustion. However, improved proliferation of HEV-specific CD8+ T cells, increased interferon-γ production and evolution of a memory-like phenotype were observed upon reduction of immunosuppression and/or ribavirin treatment and were associated with viral clearance. In 1 patient, mutational viral escape in a targeted CD8+ T-cell epitope contributed to CD8+ T-cell failure. CONCLUSION: Chronic HEV infection is associated with HEV-specific CD8+ T-cell exhaustion, indicating that T-cell exhaustion driven by persisting antigen recognition also occurs in severely immunosuppressed hosts. Functional reinvigoration of virus-specific T cells is at least partially possible when antigen is cleared. In a minority of patients, viral escape also contributes to HEV-specific CD8+ T-cell failure and thus needs to be considered in personalized immunotherapeutic approaches. LAY SUMMARY: Hepatitis E virus (HEV) infection is usually cleared spontaneously (without treatment) in patients with fully functioning immune systems. In immunosuppressed patients, chronic HEV infection is common and can progress rapidly to cirrhosis and liver failure. Herein, we identified the presence of HEV-specific CD8+ T cells (a specific type of immune cell that can target HEV) in immunosuppressed patients, but we show that these cells do not function properly. This dysfunction appears to play a role in the development of chronic HEV infection in vulnerable patients.


Subject(s)
Hepatitis E virus , Hepatitis E , Liver Failure , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Interferon-gamma , Liver Cirrhosis , Ribavirin
3.
Nat Commun ; 12(1): 6405, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737266

ABSTRACT

The origin of SARS-CoV-2 variants of concern remains unclear. Here, we test whether intra-host virus evolution during persistent infections could be a contributing factor by characterizing the long-term SARS-CoV-2 infection dynamics in an immunosuppressed kidney transplant recipient. Applying RT-qPCR and next-generation sequencing (NGS) of sequential respiratory specimens, we identify several mutations in the viral genome late in infection. We demonstrate that a late viral isolate exhibiting genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil, can escape neutralization by COVID-19 antisera. Moreover, infection of susceptible mice with this patient's escape variant elicits protective immunity against re-infection with either the parental virus and the escape variant, as well as high neutralization titers against the alpha and beta SARS-CoV-2 variants, B.1.1.7 and B.1.351, demonstrating a considerable immune control against such variants of concern. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results suggest that immunocompromised patients could be a source for the emergence of potentially harmful SARS-CoV-2 variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Genome, Viral , Humans , Immune Evasion , Immunocompromised Host , Male , Middle Aged , Mutation , Neutralization Tests , Phylogeny , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
4.
Nature ; 597(7875): 268-273, 2021 09.
Article in English | MEDLINE | ID: mdl-34320609

ABSTRACT

SARS-CoV-2 spike mRNA vaccines1-3 mediate protection from severe disease as early as ten days after prime vaccination3, when neutralizing antibodies are hardly detectable4-6. Vaccine-induced CD8+ T cells may therefore be the main mediators of protection at this early stage7,8. The details of their induction, comparison to natural infection, and association with other arms of vaccine-induced immunity remain, however, incompletely understood. Here we show on a single-epitope level that a stable and fully functional CD8+ T cell response is vigorously mobilized one week after prime vaccination with bnt162b2, when circulating CD4+ T cells and neutralizing antibodies are still weakly detectable. Boost vaccination induced a robust expansion that generated highly differentiated effector CD8+ T cells; however, neither the functional capacity nor the memory precursor T cell pool was affected. Compared with natural infection, vaccine-induced early memory T cells exhibited similar functional capacities but a different subset distribution. Our results indicate that CD8+ T cells are important effector cells, are expanded in the early protection window after prime vaccination, precede maturation of other effector arms of vaccine-induced immunity and are stably maintained after boost vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Vaccines, Synthetic/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , Humans , Immunization, Secondary , Immunologic Memory/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Time Factors , mRNA Vaccines
5.
Nat Immunol ; 22(2): 229-239, 2021 02.
Article in English | MEDLINE | ID: mdl-33398179

ABSTRACT

In chronic hepatitis C virus (HCV) infection, exhausted HCV-specific CD8+ T cells comprise memory-like and terminally exhausted subsets. However, little is known about the molecular profile and fate of these two subsets after the elimination of chronic antigen stimulation by direct-acting antiviral (DAA) therapy. Here, we report a progenitor-progeny relationship between memory-like and terminally exhausted HCV-specific CD8+ T cells via an intermediate subset. Single-cell transcriptomics implicated that memory-like cells are maintained and terminally exhausted cells are lost after DAA-mediated cure, resulting in a memory polarization of the overall HCV-specific CD8+ T cell response. However, an exhausted core signature of memory-like CD8+ T cells was still detectable, including, to a smaller extent, in HCV-specific CD8+ T cells targeting variant epitopes. These results identify a molecular signature of T cell exhaustion that is maintained as a chronic scar in HCV-specific CD8+ T cells even after the cessation of chronic antigen stimulation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Immunologic Memory/genetics , Transcriptome , Antigens, Viral/immunology , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Gene Expression Profiling , Gene Regulatory Networks , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Host-Pathogen Interactions , Humans , Phenotype , Remission Induction , Single-Cell Analysis , Treatment Outcome
6.
Nat Med ; 27(1): 78-85, 2021 01.
Article in English | MEDLINE | ID: mdl-33184509

ABSTRACT

Emerging data indicate that SARS-CoV-2-specific CD8+ T cells targeting different viral proteins are detectable in up to 70% of convalescent individuals1-5. However, very little information is currently available about the abundance, phenotype, functional capacity and fate of pre-existing and induced SARS-CoV-2-specific CD8+ T cell responses during the natural course of SARS-CoV-2 infection. Here, we define a set of optimal and dominant SARS-CoV-2-specific CD8+ T cell epitopes. We also perform a high-resolution ex vivo analysis of pre-existing and induced SARS-CoV-2-specific CD8+ T cells, applying peptide-loaded major histocompatibility complex class I (pMHCI) tetramer technology. We observe rapid induction, prolonged contraction and emergence of heterogeneous and functionally competent cross-reactive and induced memory CD8+ T cell responses in cross-sectionally analyzed individuals with mild disease following SARS-CoV-2 infection and three individuals longitudinally assessed for their T cells pre- and post-SARS-CoV-2 infection. SARS-CoV-2-specific memory CD8+ T cells exhibited functional characteristics comparable to influenza-specific CD8+ T cells and were detectable in SARS-CoV-2 convalescent individuals who were seronegative for anti-SARS-CoV-2 antibodies targeting spike (S) and nucleoprotein (N). These results define cross-reactive and induced SARS-CoV-2-specific CD8+ T cell responses as potentially important determinants of immune protection in mild SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/blood , Case-Control Studies , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Cross Reactions , Cross-Sectional Studies , Epitopes, T-Lymphocyte , Flow Cytometry , HLA-B Antigens/immunology , Humans , Immunologic Memory , Longitudinal Studies , Phosphoproteins/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry
7.
Int J Mol Sci ; 21(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781731

ABSTRACT

A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.


Subject(s)
Adaptive Immunity , Hepacivirus/immunology , Animals , Antibody Formation/immunology , Clinical Trials as Topic , Humans , T-Lymphocytes/immunology , Viral Vaccines/immunology
8.
J Hepatol ; 70(6): 1072-1081, 2019 06.
Article in English | MEDLINE | ID: mdl-30769005

ABSTRACT

BACKGROUND & AIMS: Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphisms are linked with human leukocyte antigen (HLA) class I-associated autoinflammatory disorders, including ankylosing spondylitis and Behçet's disease. Disease-associated ERAP1 allotypes exhibit distinct functional properties, but it remains unclear how differential peptide trimming in vivo affects the repertoire of epitopes presented to CD8+ T cells. The aim of this study was to determine the impact of ERAP1 allotypes on the virus-specific CD8+ T cell epitope repertoire in an HLA-B*27:05+ individual with acute hepatitis C virus (HCV) infection. METHODS: We performed genetic and functional analyses of ERAP1 allotypes and characterized the HCV-specific CD8+ T cell repertoire at the level of fine epitope specificity and HLA class I restriction, in a patient who had acquired an HCV genotype 1a infection through a needle-stick injury. RESULTS: Two hypoactive allotypic variants of ERAP1 were identified in an individual with acute HCV infection. The associated repertoire of virus-derived epitopes recognized by CD8+ T cells was uncommon in a couple of respects. Firstly, reactivity was directed away from classically immunodominant epitopes, preferentially targeting either novel or subdominant epitopes. Secondly, reactivity was biased towards longer epitopes (10-11-mers). Despite the patient exhibiting favorable prognostic indicators, these atypical immune responses failed to clear the virus and the patient developed persistent low-level infection with HCV. CONCLUSIONS: ERAP1 allotypes modify the virus-specific CD8+ T cell epitope repertoire in vivo, leading to altered immunodominance patterns that may contribute to the failure of antiviral immunity after infection with HCV. LAY SUMMARY: Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in antigen presentation. Genetic variants of ERAP1 (leading to distinct allotypes) are linked with specific autoinflammatory disorders, such as ankylosing spondylitis and Behçet's disease. We found that ERAP1 allotypes modified the repertoire of virus-specific CD8+ T cell epitopes in a patient with hepatitis C virus, leading to an altered pattern of immunodominance that may have contributed to the failure of antiviral immunity in this patient.


Subject(s)
Aminopeptidases/genetics , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Hepatitis C/immunology , Minor Histocompatibility Antigens/genetics , Acute Disease , Hepacivirus/immunology , Humans
9.
Gut ; 68(5): 905-915, 2019 05.
Article in English | MEDLINE | ID: mdl-30622109

ABSTRACT

OBJECTIVE: A hallmark of chronic HBV (cHBV) infection is the presence of impaired HBV-specific CD8+ T cell responses. Functional T cell exhaustion induced by persistent antigen stimulation is considered a major mechanism underlying this impairment. However, due to their low frequencies in chronic infection, it is currently unknown whether HBV-specific CD8+ T cells targeting different epitopes are similarly impaired and share molecular profiles indicative of T cell exhaustion. DESIGN: By applying peptide-loaded MHC I tetramer-based enrichment, we could detect HBV-specific CD8+ T cells targeting epitopes in the HBV core and the polymerase proteins in the majority of 85 tested cHBV patients with low viral loads. Lower detection rates were obtained for envelope-specific CD8+ T cells. Subsequently, we performed phenotypic and functional in-depth analyses. RESULTS: HBV-specific CD8+ T cells are not terminally exhausted but rather exhibit a memory-like phenotype in patients with low viral load possibly reflecting weak ongoing cognate antigen recognition. Moreover, HBV-specific CD8+ T cells targeting core versus polymerase epitopes significantly differed in frequency, phenotype and function. In particular, in comparison with core-specific CD8+ T cells, a higher frequency of polymerase-specific CD8+ T cells expressed CD38, KLRG1 and Eomes accompanied by low T-bet expression and downregulated CD127 indicative of a more severe T cell exhaustion. In addition, polymerase-specific CD8+ T cells exhibited a reduced expansion capacity that was linked to a dysbalanced TCF1/BCL2 expression. CONCLUSIONS: Overall, the molecular mechanisms underlying impaired T cell responses differ with respect to the targeted HBV antigens. These results have potential implications for immunotherapeutic approaches in HBV cure.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Gene Products, pol/metabolism , Hepatitis B virus/immunology , Hepatitis B, Chronic/metabolism , Viral Core Proteins/metabolism , Viral Load , Adult , Aged , Cohort Studies , Female , Hepatitis B, Chronic/etiology , Humans , Male , Middle Aged , Phenotype
10.
J Allergy Clin Immunol ; 141(4): 1427-1438, 2018 04.
Article in English | MEDLINE | ID: mdl-28782633

ABSTRACT

BACKGROUND: Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE: We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS: Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS: We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION: We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Mutation/genetics , Plasma Cells/pathology , SEC Translocation Channels/genetics , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Agammaglobulinemia/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Calcium/metabolism , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Exome/genetics , HEK293 Cells , HeLa Cells , Heterozygote , Humans , Immunologic Deficiency Syndromes/metabolism , Plasma Cells/metabolism , Protein Transport/genetics , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Unfolded Protein Response/genetics
11.
Nat Commun ; 8: 15050, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28466857

ABSTRACT

Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Adult , Aged , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Female , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatitis C, Chronic/metabolism , Hepatitis C, Chronic/virology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...