Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(52): e2210863119, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36534809

ABSTRACT

Beginning ~3,500 to 3,300 y B.P., humans voyaged into Remote Oceania. Radiocarbon-dated archaeological evidence coupled with cultural, linguistic, and genetic traits indicates two primary migration routes: a Southern Hemisphere and a Northern Hemisphere route. These routes are separated by low-lying, equatorial atolls that were settled during secondary migrations ~1,000 y later after their exposure by relative sea-level fall from a mid-Holocene highstand. High volcanic islands in the Federated States of Micronesia (Pohnpei and Kosrae) also lie between the migration routes and settlement is thought to have occurred during the secondary migrations despite having been above sea level during the initial settlement of Remote Oceania. We reconstruct relative sea level on Pohnpei and Kosrae using radiocarbon-dated mangrove sediment and show that, rather than falling, there was a ~4.3-m rise over the past ~5,700 y. This rise, likely driven by subsidence, implies that evidence for early settlement could lie undiscovered below present sea level. The potential for earlier settlement invites reinterpretation of migration pathways into Remote Oceania and monument building. The UNESCO World Heritage sites of Nan Madol (Pohnpei) and Leluh (Kosrae) were constructed when relative sea level was ~0.94 m (~770 to 750 y B.P.) and ~0.77 m (~640 to 560 y B.P.) lower than present, respectively. Therefore, it is unlikely that they were originally constructed as islets separated by canals filled with ocean water, which is their prevailing interpretation. Due to subsidence, we propose that these islands and monuments are more vulnerable to future relative sea-level rise than previously identified.


Subject(s)
Environment , Sea Level Rise , Humans , Oceania , Micronesia , Archaeology
2.
Mar Pollut Bull ; 151: 110721, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056581

ABSTRACT

Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400-700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20-50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Wetlands , Geologic Sediments , Islands , Metals, Heavy , New York City , Petroleum Pollution , Water Pollutants, Chemical/toxicity
3.
Nature ; 564(7736): 400-404, 2018 12.
Article in English | MEDLINE | ID: mdl-30568196

ABSTRACT

Identifying the causes of historical trends in relative sea level-the height of the sea surface relative to Earth's crust-is a prerequisite for predicting future changes. Rates of change along the eastern coast of the USA (the US East Coast) during the past century were spatially variable, and relative sea level rose faster along the Mid-Atlantic Bight than along the South Atlantic Bight and the Gulf of Maine. Past studies suggest that Earth's ongoing response to the last deglaciation1-5, surface redistribution of ice and water5-9 and changes in ocean circulation9-13 contributed considerably to this large-scale spatial pattern. Here we analyse instrumental data14,15 and proxy reconstructions4,12 using probabilistic methods16-18 to show that vertical motions of Earth's crust exerted the dominant control on regional spatial differences in relative sea-level trends along the US East Coast during 1900-2017, explaining most of the large-scale spatial variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral forebulge associated with the last deglaciation are strongest near North Carolina, Maryland and Virginia. Such structure indicates that Earth's elastic lithosphere is thicker than has been assumed in other models19-22. We also find a substantial coastal gradient in relative sea-level trends over this period that is unrelated to deglaciation and suggests contributions from twentieth-century redistribution of ice and water. Our results indicate that the majority of large-scale spatial variation in long-term rates of relative sea-level rise on the US East Coast is due to geological processes that will persist at similar rates for centuries.

4.
Proc Natl Acad Sci U S A ; 115(30): 7729-7734, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987009

ABSTRACT

Identifying physical processes responsible for historical coastal sea-level changes is important for anticipating future impacts. Recent studies sought to understand the drivers of interannual to multidecadal sea-level changes on the United States Atlantic and Gulf coasts. Ocean dynamics, terrestrial water storage, vertical land motion, and melting of land ice were highlighted as important mechanisms of sea-level change along this densely populated coast on these time scales. While known to exert an important control on coastal ocean circulation, variable river discharge has been absent from recent discussions of drivers of sea-level change. We update calculations from the 1970s, comparing annual river-discharge and coastal sea-level data along the Gulf of Maine, Mid-Atlantic Bight, South Atlantic Bight, and Gulf of Mexico during 1910-2017. We show that river-discharge and sea-level changes are significantly correlated ([Formula: see text]), such that sea level rises between 0.01 and 0.08 cm for a 1 [Formula: see text] annual river-discharge increase, depending on region. We formulate a theory that describes the relation between river-discharge and halosteric sea-level changes (i.e., changes in sea level related to salinity) as a function of river discharge, Earth's rotation, and density stratification. This theory correctly predicts the order of observed increment sea-level change per unit river-discharge anomaly, suggesting a causal relation. Our results have implications for remote sensing, climate modeling, interpreting Common Era proxy sea-level reconstructions, and projecting coastal flood risk.

5.
Glob Chang Biol ; 23(2): 755-766, 2017 02.
Article in English | MEDLINE | ID: mdl-27343840

ABSTRACT

To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh-to-upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh-edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: Wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a 'hydrologic migration zone', consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone - which extended to an elevation higher than the highest astronomical tide datum - captured the biotic and edaphic marsh-upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings.


Subject(s)
Soil/chemistry , Wetlands , Ecosystem , Estuaries , Salinity
6.
Proc Natl Acad Sci U S A ; 113(11): E1434-41, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26903659

ABSTRACT

We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

7.
Proc Natl Acad Sci U S A ; 112(41): 12610-5, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26417111

ABSTRACT

In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


Subject(s)
Climate Change , Cyclonic Storms , Disasters , Floods , Models, Theoretical , New York City
8.
Proc Natl Acad Sci U S A ; 108(27): 11017-22, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21690367

ABSTRACT

We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

SELECTION OF CITATIONS
SEARCH DETAIL
...