Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Intensive Care Med ; 39(7): 628-635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38190576

ABSTRACT

Background: The likelihood of a patient being preload responsive-a state where the cardiac output or stroke volume (SV) increases significantly in response to preload-depends on both cardiac filling and function. This relationship is described by the canonical Frank-Starling curve. Research Question: We hypothesize that a novel method for phenotyping hypoperfused patients (ie, the "Doppler Starling curve") using synchronously measured jugular venous Doppler as a marker of central venous pressure (CVP) and corrected flow time of the carotid artery (ccFT) as a surrogate for SV will refine the pretest probability of preload responsiveness/unresponsiveness. Study Design and Methods: We retrospectively analyzed a prospectively collected convenience sample of hypoperfused adult emergency department (ED) patients. Doppler measurements were obtained before and during a preload challenge using a wireless, wearable Doppler ultrasound system. Based on internal jugular and carotid artery Doppler surrogates of CVP and SV, respectively, we placed hemodynamic assessments into quadrants (Qx) prior to preload augmentation: low CVP with normal SV (Q1), high CVP and normal SV (Q2), low CVP and low SV (Q3) and high CVP and low SV (Q4). The proportion of preload responsive and unresponsive assessments in each quadrant was calculated based on the maximal change in ccFT (ccFTΔ) during either a passive leg raise or rapid fluid challenge. Results: We analyzed 41 patients (68 hemodynamic assessments) between February and April 2021. The prevalence of each phenotype was: 15 (22%) in Q1, 8 (12%) in Q2, 39 (57%) in Q3, and 6 (9%) in Q4. Preload unresponsiveness rates were: Q1, 20%; Q2, 50%; Q3, 33%, and Q4, 67%. Interpretation: Even fluid naïve ED patients with sonographic estimates of low CVP have high rates of fluid unresponsiveness, making dynamic testing valuable to prevent ineffective IVF administration.


Subject(s)
Carotid Arteries , Fluid Therapy , Jugular Veins , Ultrasonography, Doppler , Humans , Pilot Projects , Male , Female , Fluid Therapy/methods , Middle Aged , Jugular Veins/diagnostic imaging , Prospective Studies , Carotid Arteries/diagnostic imaging , Aged , Resuscitation/methods , Central Venous Pressure/physiology , Retrospective Studies , Adult , Stroke Volume/physiology , Cardiac Output/physiology , Emergency Service, Hospital , Hemodynamics
2.
Ultrasound J ; 15(1): 32, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505318

ABSTRACT

Providing intravenous (IV) fluids to a patient with signs or symptoms of hypoperfusion is common. However, evaluating the IV fluid 'dose-response' curve of the heart is elusive. Two patients were studied in the emergency department with a wireless, wearable Doppler ultrasound system. Change in the common carotid arterial and internal jugular Doppler spectrograms were simultaneously obtained as surrogates of left ventricular stroke volume (SV) and central venous pressure (CVP), respectively. Both patients initially had low CVP jugular venous Doppler spectrograms. With preload augmentation, only one patient had arterial Doppler measures indicative of significant SV augmentation (i.e., 'fluid responsive'). The other patient manifested diminishing arterial response, suggesting depressed SV (i.e., 'fluid unresponsive') with evidence of ventricular asynchrony. In this short communication, we describe how a wireless, wearable Doppler ultrasound simultaneously tracks surrogates of cardiac preload and output within a 'Doppler Starling curve' framework; implications for IV fluid dosing are discussed.

3.
J Intensive Care ; 11(1): 7, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793079

ABSTRACT

BACKGROUND: Little data exist on the time spent by emergency department (ED) personnel providing intravenous (IV) fluid to 'responsive' versus 'unresponsive' patients. METHODS: A prospective, convenience sample of adult ED patients was studied; patients were enrolled if preload expansion was indicated for any reason. Using a novel, wireless, wearable ultrasound, carotid artery Doppler was obtained before and throughout a preload challenge (PC) prior to each bag of ordered IV fluid. The treating clinician was blinded to the results of the ultrasound. IV fluid was deemed 'effective' or 'ineffective' based on the greatest change in carotid artery corrected flow time (ccFT∆) during the PC. The duration, in minutes, of each bag of IV fluid administered was recorded. RESULTS: 53 patients were recruited and 2 excluded for Doppler artifact. There were 86 total PCs included in the investigation comprising 81.7 L of administered IV fluid. 19,667 carotid Doppler cardiac cycles were analyzed. Using ccFT∆ ≥ + 7 ms to discriminate 'physiologically effective' from 'ineffective' IV fluid, we observed that 54 PCs (63%) were 'effective', comprising 51.7 L of IV fluid, whereas, 32 (37%) were 'ineffective' comprising 30 L of IV fluid. 29.75 total hours across all 51 patients were spent in the ED providing IV fluids categorized as 'ineffective.' CONCLUSIONS: We report the largest-known carotid artery Doppler analysis (i.e., roughly 20,000 cardiac cycles) in ED patients requiring IV fluid expansion. A clinically significant amount of time was spent providing physiologically ineffective IV fluid. This may represent an avenue to improve ED care efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...