Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(5): 2621, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37130001

ABSTRACT

The Arctic Ocean is undergoing dramatic changes in response to increasing atmospheric concentrations of greenhouse gases. The 2016-2017 Canada Basin Acoustic Propagation Experiment was conducted to assess the effects of the changes in the sea ice and ocean structure in the Beaufort Gyre on low-frequency underwater acoustic propagation and ambient sound. An ocean acoustic tomography array with a radius of 150 km that consisted of six acoustic transceivers and a long vertical receiving array measured the impulse responses of the ocean at a variety of ranges every four hours using broadband signals centered at about 250 Hz. The peak-to-peak low-frequency travel-time variability of the early, resolved ray arrivals that turn deep in the ocean was only a few tens of milliseconds, roughly an order of magnitude smaller than observed in previous tomographic experiments at similar ranges, reflecting the small spatial scale and relative sparseness of mesoscale eddies in the Canada Basin. The high-frequency travel-time fluctuations were approximately 2 ms root-mean-square, roughly comparable to the expected measurement uncertainty, reflecting the low internal-wave energy level. The travel-time spectra show increasing energy at lower frequencies and enhanced semidiurnal variability, presumably due to some combination of the semidiurnal tides and inertial variability.

2.
J Acoust Soc Am ; 134(4): 3359-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116529

ABSTRACT

A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Models, Theoretical , Motion , Noise , Oceanography/instrumentation , Oceans and Seas , Philippines , Scattering, Radiation , Signal Processing, Computer-Assisted , Sound Spectrography , Temperature , Time Factors , Transducers , Water Movements
3.
J Acoust Soc Am ; 111(4): 1655-66, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12002848

ABSTRACT

The 1995 Shallow Water Acoustics in a Random Medium (SWARM) experiment [Apel et al., IEEE J. Ocean. Eng. 22, 445-464 (1997)] was conducted off the New Jersey coast. The experiment featured two well-populated vertical receiving arrays, which permitted the measured acoustic field to be decomposed into its normal modes. The decomposition was repeated for successive transmissions allowing the amplitude of each mode to be tracked. The modal amplitudes were observed to decorrelate with time scales on the order of 100 s [Headrick et al., J. Acoust. Soc. Am. 107(1), 201-220 (2000)]. In the present work, a theoretical model is proposed to explain the observed decorrelation. Packets of intense internal waves are modeled as coherent structures moving along the acoustic propagation path without changing shape. The packets cause mode coupling and their motion results in a changing acoustic interference pattern. The model is consistent with the rapid decorrelation observed in SWARM. The model also predicts the observed partial recorrelation of the field at longer time scales. The model is first tested in simple continuous-wave simulations using canonical representations for the internal waves. More detailed time-domain simulations are presented mimicking the situation in SWARM. Modeling results are compared to experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...