Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Insect Biochem Mol Biol ; 166: 104074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228213

ABSTRACT

The solitary bee Osmia lignaria is a native pollinator in North America with growing economic importance. The life cycle of O. lignaria provides a unique opportunity to compare the physiological and molecular mechanisms underlying two ecologically contrasting dormancies within the same species. O. lignaria prepupae become dormant during the summer to avoid high temperatures. Shortly after adult eclosion, they enter a second dormancy and overwinter as diapausing adults. To compare these two dormancies, we measured metabolic rates and gene expression across development as bees initiate, maintain, and terminate both prepupal (summer) and adult (overwintering) dormancies. We observed a moderate temperature-independent decrease in gas exchange during both the prepupal dormancy after cocoon spinning (45 %) and during adult diapause after eclosion (60 %). We sequenced and assembled a high-quality reference genome from a single haploid male bee with a contiguous n50 of 5.5 Mbp to facilitate our transcriptomic analysis. The transcriptomes of dormant prepupae and diapausing adults clustered into distinct groups more closely associated with life stage than dormancy status. Membrane transport, membrane-bound cellular components, oxidoreductase activity, glutathione metabolism, and transcription factor activity increased during adult diapause, relative to prepupal dormancy. Further, the transcriptomes of adults in diapause clustered into two groups, supporting multiple phases of diapause during winter. Late adult diapause was associated with gene expression profiles supporting increased insulin/IGF, juvenile hormone, and ecdysone signaling.


Subject(s)
Diapause , Transcriptome , Bees/genetics , Male , Animals , Temperature , Gene Expression Profiling , Life Cycle Stages
2.
J Chem Ecol ; 43(5): 451-468, 2017 May.
Article in English | MEDLINE | ID: mdl-28500569

ABSTRACT

Species-specific biochemistry, morphology, and function of the Dufour's gland have been investigated for social bees and some non-social bee families. Most of the solitary bees previously examined are ground-nesting bees that use Dufour's gland secretions to line brood chambers. This study examines the chemistry of the cuticle and Dufour's gland of cavity-nesting Megachile rotundata and Osmia lignaria, which are species managed for crop pollination. Glandular and cuticular lipid compositions were characterized and compared to each other and according to the nesting experience of adult females. Major lipid classes found were hydrocarbons, free fatty acids, and wax esters. Many components were common to the cuticle and Dufour's glands of each species, yet not identical in number or relative composition. Wax esters and fatty acids were more prevalent in Dufour's glands of M. rotundata than on cuticles. Wax esters were more abundant on cuticles of O. lignaria than in Dufour's glands. In both species, fatty acids were more prevalent in glands of field-collected females compared to any other sample type. Chemical profiles of cuticles and glands were distinct from each other, and, for O. lignaria, profiles of laboratory-maintained bees could be distinguished from those of field-collected bees. Comparison of percentiles of individual components of cuticular and glandular profiles of the same bee showed that the proportions of some cuticular components were predictive of the proportion of the same glandular components, especially for nesting females. Lastly, evidence suggested that Dufour's gland is the major source of nest-marking substances in M. rotundata, but evidence for this role in O. lignaria was less conclusive.


Subject(s)
Bees/chemistry , Fatty Acids/analysis , Hydrocarbons/analysis , Animals , Bees/metabolism , Discriminant Analysis , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Principal Component Analysis , Species Specificity
3.
J Econ Entomol ; 109(3): 993-1000, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26994099

ABSTRACT

The alfalfa leafcutting bee, Megachile rotundata (F.), is the primary pollinator for alfalfa seed production in North America. Under current management practice, developing pupae are incubated at 29-30°C until the adults emerge for pollination. If unfavorable spring weather delays peak alfalfa bloom, managers will cool pupae to slow development, which can increase mortality and causes sublethal effects. Previously, we demonstrated that exposure to a fluctuating thermal regime (FTR) increases survival and extends the viable storage period. To determine the optimal conditions for FTR during storage of developing M. rotundata , we examined four variables: temperature of the daily warm pulse, duration of the warm pulse, number of weeks exposed to the FTR treatment, and developmental stage of the bee. Survival was measured by successful eclosion to the adult stage. Under all conditions, exposure to FTR increased survival compared with exposure to a constant 6°C. When the temperature of the daily warm pulse was 20-25°C from a base temperature of 6°C, and the pulse duration was extended to 3 h, survival rates were as high as those observed under standard storage conditions (29°C). Under this FTR storage protocol, bee managers can delay emergence for ∼8 wk without significant decreases in survival. Our findings have substantial economic implications for bee management and alfalfa seed production by increasing the flexibility and efficiency of M. rotundata adult emergence.

4.
PLoS One ; 11(2): e0150055, 2016.
Article in English | MEDLINE | ID: mdl-26910061

ABSTRACT

We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional adult bee numbers. The result is an Allee effect, a net per-individual rate of hive increase that increases as a function of adult bee numbers. The Allee effect creates a critical minimum size in adult bee numbers, below which mortality is greater than recruitment, with ensuing loss of viability of the hive. Under ordinary and favorable environmental circumstances, the critical size is low, and hives remain large, sending off viably-sized swarms (naturally or through beekeeping management) when hive numbers approach an upper stable equilibrium size (carrying capacity). However, both the lower critical size and the upper stable size depend on many parameters related to demographic rates and their enhancement by bee sociality. Any environmental factors that increase mortality, decrease recruitment, or interfere with the social moderation of these rates has the effect of exacerbating the Allee effect by increasing the lower critical size and substantially decreasing the upper stable size. As well, the basin of attraction to the upper stable size, defined by the model potential function, becomes narrower and shallower, indicating the loss of resilience as the hive becomes subjected to increased risk of falling below the critical size. Environmental effects of greater severity can cause the two equilibria to merge and the basin of attraction to the upper stable size to disappear, resulting in collapse of the hive from any initial size. The model suggests that multiple proximate causes, among them pesticides, mites, pathogens, and climate change, working singly or in combinations, could trigger hive collapse.


Subject(s)
Bees/physiology , Models, Biological , Animals
5.
Environ Entomol ; 45(1): 245-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26385932

ABSTRACT

Alfalfa seed production in the northwestern United States and western Canada is heavily dependent upon the pollinating services of Megachile rotundata (F.) (Hymenoptera: Megachilidae). M. rotundata females nest in cavities either naturally occurring or in artificial nesting blocks. Because of the physical nature of the nest, M. rotundata brood may have limited to no exposure to photoperiodic cues in order to regulate important circadian functions. Therefore, various thermoperiod regimes were used to characterize the possible role of thermoperiodism in synchronizing M. rotundata adult emergence. Adult emergence was monitored using a microprocessor-controlled event logger. Incubating bees under constant 29°C and darkness resulted in an arhythmic adult emergence pattern. Exposing developing M. rotundata to a thermoperiod synchronized emergence to the beginning of the thermophase and decreased the total number of days required for all adults to emerge. The amplitude of the thermoperiod regulated the timing of peak emergence in relationship to the increase in temperature. A thermoperiod amplitude of only 2°C was sufficient to synchronize peak adult emergence to take place during the rise in temperature. Increasing the amplitude of the thermoperiod to 4 or 8°C caused a positively correlated shift in peak emergence to later in the thermophase. Brood stored under constant 29°C and darkness for different durations (May or June early in the growing season or July or August late in the growing season) or under a fluctuating thermal regime (base temperature of 6°C and daily 1-h pulse of 20°C until September or November) maintained their capacity for entraining emergence timing by thermoperiodism.


Subject(s)
Bees/growth & development , Animals , Temperature
6.
Physiol Biochem Zool ; 88(5): 508-20, 2015.
Article in English | MEDLINE | ID: mdl-26658248

ABSTRACT

Metamorphosis is an important developmental stage for holometabolous insects, during which adult morphology and physiology are established. Proper development relies on optimal body temperatures, and natural ambient temperature (Ta) fluctuations, especially in spring or in northern latitudes, could result in interruptions to development. It is unclear how low-Ta exposure may affect insects that are actively developing. To understand how suboptimal Ta may affect metamorphosing insects, we used the alfalfa leafcutting bee, Megachile rotundata (Fabricius), a solitary, cavity-nesting bee that spends its juvenile and pupal stages within a brood cell. We characterized suites of physiological traits, rather than just using a singular parameter to determine effects of sublethal Ta stress. Metamorphosing M. rotundata were exposed to either constant or fluctuating low-Ta stress and compared to control bees allowed to develop normally. All bees survived and emerged as adults, but the constant low-Ta-stressed bees were affected most severely. Male constant low-Ta-stressed bees had decreased flight performance (lower metabolic rate, shorter flight bouts, decreased wing length), suggesting that the stress altered muscular or neurological development. Constant low-Ta-stressed bees also had altered activity levels, providing more support for the hypothesis that low-Ta stress causes long-term neurological defects. Exposure to fluctuating low Ta also delayed development time for both sexes; males had decreased adult life span, and both sexes had shortened wings. Together, these results provide evidence for a critical developmental window during metamorphosis and suggest that there may be severe implications for bees in the wild that are exposed to low-Ta stressors.


Subject(s)
Bees/growth & development , Cold Temperature , Metamorphosis, Biological/physiology , Animals , Energy Metabolism , Female , Flight, Animal/physiology , Longevity , Male , Pupa/physiology , Stress, Physiological , Wings, Animal/growth & development
7.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25977371

ABSTRACT

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Subject(s)
Bees/genetics , Evolution, Molecular , Genetic Drift , Social Behavior , Transcriptome , Amino-Acid N-Acetyltransferase , Animals , Bees/classification , DNA Transposable Elements , Gene Expression Regulation , Gene Regulatory Networks , Genome, Insect/genetics , Phylogeny , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics
8.
J Exp Biol ; 218(Pt 7): 1060-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25657206

ABSTRACT

The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures during long-term chilling has been shown to increase survival in many insects. However, the transcripts responsible for this increase in survival have never been characterized. Here, we present the first transcriptome-level analysis of increased longevity under fluctuating temperatures during chilling. Overwintering post-diapause quiescent alfalfa leafcutting bees (Megachile rotundata) were exposed to a constant temperature of 6°C, or 6°C with a daily fluctuation to 20°C. RNA was collected at two different time points, before and after mortality rates began to diverge between temperature treatments. Expression analysis identified differentially regulated transcripts between pairwise comparisons of both treatments and time points. Transcripts functioning in ion homeostasis, metabolic pathways and oxidative stress response were up-regulated in individuals exposed to periodic temperature fluctuations during chilling. The differential expression of these transcripts provides support for the hypotheses that fluctuating temperatures protect against chill injury by reducing oxidative stress and returning ion concentrations and metabolic function to more favorable levels. Additionally, exposure to fluctuating temperatures leads to increased expression of transcripts functioning in the immune response and neurogenesis, providing evidence for additional mechanisms associated with increased survival during chilling in M. rotundata.


Subject(s)
Bees/physiology , Animals , Bees/genetics , Gene Expression Profiling , Larva/genetics , Larva/physiology , Longevity , Oxidative Stress , Temperature , Transcription, Genetic
9.
Environ Entomol ; 43(4): 1045-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24914676

ABSTRACT

Megachile rotundata (F.) (Hymenoptera: Megachilidae) is the primary pollinator of alfalfa in the northwestern United States and western Canada and provides pollination services for onion, carrot, hybrid canola, various legumes, and other specialty crops. M. rotundata females are gregarious, nest in cavities either naturally occurring or in artificial nesting blocks, where they construct a linear series of brood cells. Because of the physical layout of the nest, the age of the larvae within the nest and the microenvironment the individual larvae experience will vary. These interacting factors along with other maternal inputs affect the resulting phenotypes of the nest mates. To further our understanding of in-nest physiology, gender and developmental rates were examined in relationship to cell position within the nest. Eighty-two percent of the females were located within the first three cells, those furthest from the nest entrance. For those individuals developing in cells located in the deepest half of the nest, the sex of the previous bee had a significant effect on the female decision of the gender of the following nest mate. Removing the prepupae from the nest and rearing them under identical conditions demonstrated that position within the nest during larval development had a significant effect on the postdiapause developmental rates, with males whose larval development occurred deeper in the nest developing more slowly than those toward the entrance. No positional effect on postdiapause developmental rates was noted for the females. The cell position effect on male postdiapause developmental rate demonstrates that postdiapause development is not a rigid physiological mechanism uniform in all individuals, but is a dynamic plastic process shaped by past environmental conditions.


Subject(s)
Bees/physiology , Diapause, Insect , Nesting Behavior , Animals , Bees/growth & development , Female , Larva/growth & development , Larva/physiology , Male , Pupa/growth & development , Pupa/physiology , Sex Characteristics
10.
J Insect Physiol ; 66: 20-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24819205

ABSTRACT

Megachile rotundata, the alfalfa leafcutting bee, is a solitary, cavity-nesting bee. M. rotundata develop from eggs laid inside brood cells constructed from leaf pieces and placed in series in an existing cavity. Due to the cavity nesting behavior of M. rotundata, developing bees may experience hypoxic conditions. The brood cell itself and the position of cell inside the cavity may impact the rates of oxygen diffusion creating hypoxic conditions for developing animals. We hypothesized that bees would be adapted to living in hypoxia and predicted that they would be highly tolerant of hypoxic conditions. To test the hypothesis, we measured critical PO2 (Pcrit) in pupal M. rotundata of varying ages. Defined as the atmospheric O2 level below which metabolic rate cannot be sustained, Pcrit is a measure of an animal's respiratory capacity. Using flow through respirometry, we measured CO2 emission rates of developing bees exposed to 21, 10, 6, 5, 4, 3, 2, 1, and 0 kPa PO2 and statistically determined Pcrit. Mean Pcrit was 4 kPa PO2 and ranged from 0 to 10 kPa PO2, similar to those of other insects. Pcrit was positively correlated with age, indicating that as pupae aged, they were less tolerant of hypoxia. To determine if there were developmental changes in tracheal structure that accounted for the increase in Pcrit, we used synchrotron X-ray imaging and measured the diameter of several tracheae in the head and abdomen of developing bees. Analyses of tracheal diameters showed that tracheae increased in size as animals aged, but the magnitude of the increase varied depending on which trachea was measured. Tracheal diameters increased as pupae molted and decreased as they neared adult emergence, possibly accounting for the decrease in hypoxia tolerance. Little is known about respiratory structures during metamorphosis in bees, and this study provides the first description of tracheal system structure and function in developing M. rotundata. Studies such as this are important for understanding how basic physiological parameters change throughout development and will help to maintain healthy pollinator populations.


Subject(s)
Bees/physiology , Oxygen/metabolism , Abdomen/physiology , Animals , Bees/anatomy & histology , Bees/growth & development , Metamorphosis, Biological , Pupa/physiology , Respiration , Trachea/physiology
11.
Environ Entomol ; 42(4): 779-89, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23905742

ABSTRACT

In-nest observations of the solitary bee, Megachile rotundata (F.), revealed that nesting females apply olfactory cues to nests for nest recognition. On their way in and out of the nest, females drag the abdomen along the entire length of the nest, and sometimes deposit fluid droplets from the tip of the abdomen. The removal of bee-marked sections of the nest resulted in hesitation and searching behavior by females, indicating the loss of olfactory cues used for nest recognition. Chemical analysis of female cuticles and the deposits inside marked nesting tubes revealed the presence of hydrocarbons, wax esters, fatty aldehydes, and fatty alcohol acetate esters. Chemical compositions were similar across tube samples, but proportionally different from cuticular extracts. These findings reveal the importance of lipids as chemical signals for nest recognition and suggest that the nest-marking cues are derived from a source in addition to, or other than, the female cuticle.


Subject(s)
Bees/physiology , Cues , Nesting Behavior , Animals , Fatty Alcohols/metabolism , Female , Gas Chromatography-Mass Spectrometry , Hydrocarbons/metabolism , Lipid Metabolism , Olfactory Perception
12.
J Econ Entomol ; 106(3): 1081-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23865170

ABSTRACT

The alfalfa leafcutting bee Megachile rotundata (F.) is the primary pollinator for alfalfa seed production. Under standard management conditions, the alfalfa leafcutting bee develops to the diapausing prepupal stage under field conditions, after which they are cold-stored at a static temperature until the following spring, when temperatures are raised and development resumes. We have assessed the effects of a fluctuating thermal regime (FTR) during overwintering cold storage, where bees were exposed to a daily 1 h pulse of 20 degrees C, and compared viability and insect quality to bees stored under a static thermal regime. Our results demonstrate that implementing an FTR protocol dramatically increases the survival of cold-stored alfalfa leafcutting bees, effectively extending their shelf-life into the subsequent growing season. These findings could substantially ameliorate significant obstacles that restrict the more widespread use of this important pollinator, such as the biological constraints that restrict its use in early blooming crops, and yearly fluctuations in bee prices that add significant financial uncertainty to end users. This study also strengthens a growing body of evidence that indicates FTR protocols are superior to static thermal regime protocols for insect cold storage.


Subject(s)
Beekeeping/methods , Bees/physiology , Animals , Bees/growth & development , Canada , Estivation , Female , Longevity , Male , Pupa/growth & development , Pupa/physiology , Seasons , Temperature , Time Factors
13.
J Insect Physiol ; 58(7): 924-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22546562

ABSTRACT

Osmia (Osmia) bees are strictly univoltine and winter as diapausing adults. In these species, the timing of adult eclosion with the onset of wintering conditions is critical, because adults exposed to long pre-wintering periods show increased lipid loss and winter mortality. Populations from warm areas fly in February-March and are exposed to longer growth seasons than populations from colder areas, which fly in April-May. Given their inability to produce an extra generation, early-flying populations should develop more slowly than late-flying populations and thus avoid the negative consequences of long pre-wintering periods. In this study we compare the development under natural and laboratory conditions of phenologically-distinct populations in two Osmia species. Early-flying populations took ∼2 months longer to develop than late-flying populations. Differences between populations in larval and pupal period duration were very small, whereas the prepupal period was much longer in early-flying populations. In contrast to the larval and pupal stages, the prepupal stage showed a non-linear response to temperature, was strongly affected by thermoperiod, and exhibited minimum respiration rates. Coupled with other lines of evidence, these results suggest that the prepupal period in Osmia corresponds to a summer diapause, and its duration may be under local selection to synchronize adult eclosion with the onset of winter temperatures. We discuss the implications of our results relative to current expectations of global warming.


Subject(s)
Bees/growth & development , Animals , Bees/physiology , Female , Larva/growth & development , Larva/physiology , Male , Pupa/growth & development , Pupa/physiology , Seasons , Temperature , Time Factors
14.
J Econ Entomol ; 105(1): 14-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22420249

ABSTRACT

Synchronizing Megachile rotundata (F.) nesting activity with alfalfa bloom is essential for ensuring optimal pollination for alfalfa seed production. This is achieved by timing the initiation of spring bee incubation so that adults will emerge -2 wk before peak bloom. If weather conditions change so as to delay the bloom, bee managers will commonly expose the developing bees to a period of low-temperature incubation to slow their development. We have previously demonstrated survival during low-temperature incubation can be significantly increased by using a fluctuating thermal regime (FTR) where the bees receive a daily pulse at 20 degrees C. A FTR incubation protocol is composed of a number of different components, such as the base and pulse temperatures, and the duration and frequency of the pulse. In this investigation, the effect of the duration of the pulse (5-120 min) and the frequency of a pulse (twice daily to weekly) on the survival of developing M. rotundata was examined. A pulse as short as 5 min at 20 degrees C increased survival of the developing bees as compared with the constant 6 degrees C controls. Increasing the pulse duration induced a further increase in tolerance to 6 degrees C. As with the pulse duration, increasing the pulse frequency from once weekly to twice daily had a significant effect on improving the bees tolerance to low-temperature incubation. This investigation further strengthens the argument that a FTR protocol is superior to using a constant low-temperature exposure for interrupting the spring incubation of M. rotundata.


Subject(s)
Beekeeping/methods , Bees/growth & development , Animals , Bees/physiology , Cold Temperature , Hot Temperature , Medicago sativa , Pollination , Population Dynamics , Pupa/growth & development
15.
J Econ Entomol ; 104(4): 1162-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21882678

ABSTRACT

A significant concern in the commercial application of the alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae), for pollination is synchronizing bee emergence and activity with peak crop bloom. Previous studies have demonstrated that the commercial spring incubation of this species can be successfully interrupted by low temperature incubation, thereby slowing development and giving producers flexibility in timing emergence to weather conditions or crop bloom. In this study, we demonstrate that the implementation of a fluctuating thermal regime, during which bees are given a daily one hour pulse of high temperature, markedly increases the "shelf-life" of individuals of this species. Although constant temperatures can be used to store bees for up to 1 wk with no decrease in survival, properly staged bees can be stored for up to 6 wk without a significant decrease in percentage of emergence. Hence, we expect fluctuating thermal regime protocols to become a valuable tool for M. rotundata managers, especially when timing nesting activity with peak bloom to maximize effectiveness.


Subject(s)
Animal Husbandry , Bees/growth & development , Temperature , Animals , Longevity
16.
J Insect Physiol ; 57(12): 1651-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21910996

ABSTRACT

The impact of climate change on insect populations depends on specific life cycle traits and physiological adaptations. The solitary bee Osmia lignaria winters as a pre-emergent adult, and requires a period of cold temperature for winter diapause completion. It is a univoltine species, and diapause induction does not depend on photoperiod. To understand the potential effects of longer summers on O. lignaria populations, we exposed individuals to three treatments simulating early, mid and late winter arrivals, and measured respiration rates, metabolic expenditure, weight loss, fat body depletion, lipid levels and winter mortality. The early-winter treatment disrupted diapause development, but had no apparent negative effects on fitness. In contrast, late-winter bees had a greater energetic expenditure (1.5-fold), weight (1.4-fold) and lipid (2-fold) loss, greater fat body depletion, and a 19% increase in mortality compared to mid-winter bees. We also monitored adult eclosion and arrival of winter temperatures under natural conditions in four years. We found a positive correlation between mean degree-day accumulation during pre-wintering (a measure of asynchrony between adult eclosion and winter arrival) and yearly winter mortality. Individually, bees experiencing greater degree-day accumulations exhibited reduced post-winter longevity. Timing of adult eclosion in O. lignaria is dependent on the duration of the prepupal period, which occurs in mid-summer, is also diapause-mediated, and is longer in populations from southerly latitudes. In a global warming scenario, we expect long summer diapause phenotypes to replace short summer diapause phenotypes, effectively maintaining short pre-wintering periods in spite of delayed winter arrivals.


Subject(s)
Bees/metabolism , Seasons , Animals , Cell Respiration , Climate Change , Energy Metabolism , Fat Body/metabolism , Female , Lipid Metabolism , Longevity , Male , Population Dynamics , Temperature , Weight Loss
17.
Article in English | MEDLINE | ID: mdl-21854865

ABSTRACT

Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6°C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25°C for 2h and 20°C for 1 or 2h. A subset of pupae at the FTR base temperature of 6°C exhibited continuous gas exchange and, once ramped to 20 or 25°C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6°C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO(2) emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15°C during the FTR high temperature pulse; and 4) a two hour pulse at 25°C doubled the number of CO(2) peaks observed during the FTR pulse as compared to a two hour pulse at 20°C.


Subject(s)
Bees/physiology , Hymenoptera/physiology , Animals , Body Temperature , Carbon Dioxide/metabolism , Cold Temperature , Hot Temperature , Pupa/physiology , Seasons , Temperature
18.
Environ Entomol ; 40(4): 917-30, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22251693

ABSTRACT

Temperature plays an important role in effective management of the alfalfa leafcutting bee [Megachile rotundata (F.); Megachilidae], the major commercial pollinator of seed alfalfa [Medicago sativa (L.); Fabaceae] in North America. To improve our understanding of threshold and optimum rearing temperatures of M. rotundata, we examined the effect of temperature on postwintering development by using a greater number of temperature treatments than applied in previous studies (19 versus eight or fewer) and analytical tools formulated to model nonlinear relationships between temperature and insect development rates. We also tested the hypothesis that rearing temperature influences adult body lipid content at emergence, which could affect adult survival, establishment and performance as a pollinator, and reproductive success. We found that the Lactin-2 and Briere-2 models provided the best fits to data and gave reasonable estimates of lower (16-18°C) and upper (36-39°C) developmental thresholds and optimum (33-34°C) rearing temperatures for maximizing development rate. Bees successfully emerged over a broad range of temperatures (22-35°C), but variation in development rate among individuals reared at the same temperature was lowest at 31-33°C. The optimum rearing temperature to maximize the proportion of body lipids in adults was 27-29°C. Our results are discussed in relation to previous findings and speak to the difficulties in designing practical rearing guidelines that simultaneously maximize development rate, survival, and adult condition, while synchronizing adult emergence with alfalfa bloom.


Subject(s)
Bees/growth & development , Lipid Metabolism , Temperature , Animals , Bees/metabolism , Body Size , Female , Male , Regression Analysis , Sex Ratio
19.
J Insect Physiol ; 56(12): 1949-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20816851

ABSTRACT

Most insects from temperate areas enter diapause ahead of winter. Species diapausing in a feeding stage and accumulating metabolic reserves during permissive pre-wintering conditions are expected to enter diapause shortly before the onset of winter. In contrast, species diapausing in a non-feeding stage are expected to lower their metabolism as soon as possible to avoid excessive consumption of metabolic reserves. The solitary bee Osmia lignaria winters as a non-feeding adult within its cocoon, but previous studies show important weight losses and increased winter mortality in populations pre-wintered for extended periods. We measured respiration rates to assess diapause initiation and maintenance during pre-wintering, and tested whether timing of adult eclosion affected fitness by measuring fat body depletion, winter mortality and post-winter longevity. We worked with different cohorts of a population reared under natural conditions, and manipulated pre-wintering duration in a population reared under artificial conditions. In agreement with our expectation, O. lignaria lower their metabolic rates within a few days of adult eclosion, but nonetheless suffer strong weight loss during pre-wintering. Early developing individuals suffer greater weight loss and fat body depletion, and have short post-winter longevity. Although, we found no differences in winter mortality among treatments, our results indicate that increased mortality may occur in years with late winter arrivals. We discuss fundamental ecophysiological differences between adult and prepupal diapause within the Megachilidae, and hypothesize that species wintering as adults will be more negatively affected by a situation of extended summers under a scenario of global warming.


Subject(s)
Bees/growth & development , Fat Body/physiology , Metamorphosis, Biological/physiology , Oxygen Consumption/physiology , Animals , Bees/physiology , Body Weight/physiology , Cohort Studies , Female , Male , Seasons , Temperature , Time Factors
20.
J Econ Entomol ; 103(2): 234-41, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20429433

ABSTRACT

A useful technique for synchronizing pollinators with the alfalfa, Medicago savita L. (Fabaceae), bloom is to interrupt the late spring incubation of developing bee pupae and pharate adults of Megachile rotundata (F.) (Hymenoptera: Megachilidae) with short-term low-temperature storage. However, low-temperature exposure can be stressful depending on the temperature, duration of exposure, and the developmental stage exposed. To evaluate the effect of low-temperature storage after development had already been initiated by exposure to 29 degrees C, three developmental stages (eye pigment pupae, body pigment pupae, and pharate adults ready to emerge) were exposed to 6, 12, or 18 degrees C for durations up to 28 d. The effect of delaying the termination of overwintering storage (6 degrees C) from April to July ("April bees" and "July bees," respectively) also was examined. The following observations were made: (1) All developmental stages of the April bees and July bees examined can be stored without harmful effects, as measured by percentage of survival, for 14 d at 12 degrees C and above. (2) Postponing the termination of overwintering storage at 6 degrees C from April until July significantly decreased the mean number of days to 95% adult emergence in the July ready-to-emerge bees across the three temperatures tested. (3) The increase of overwintering duration also caused a decrease in the postemergence longevity of the ready-to-emerge adults stored at 6 degrees C for 14 d. (4) Of the three storage temperatures examined, 18 degrees C seems to be the optimal storage temperature for short-term storage of developing bees because of their slow but continuing development without increased mortality either during storage or after emergence.


Subject(s)
Flowers/physiology , Hymenoptera/physiology , Medicago sativa/physiology , Pollination/physiology , Animals , Cold Temperature , Pupa/physiology , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...