Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(10): 105601, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21289404

ABSTRACT

Low loss core-shell iron-silica nanocomposites with improved magneto-dielectric properties at radio frequencies (1 MHz-1 GHz) were successfully fabricated. A new simple method was developed to synthesize metallic iron (Fe) nanoparticles with uniform size distribution in an aqueous environment at room temperature. Citric acid and oleic acid served as surface-capping agents to control the particle size of the synthesized Fe nanoparticles. Smaller Fe nanoparticles with narrower particle size distribution were obtained as the concentration ratio of iron ions to carboxylic acid groups decreased. The Fe nanoparticles were subsequently coated with silica (SiO(2)) layers to prevent the iron cores oxidizing. Polymer composites were prepared by incorporating Fe@SiO(2) nanoparticles with polydimethylsiloxane (PDMS) elastomers. Experimental results showed that the dielectric permittivity (ε) and magnetic permeability (µ) of the polymer composite increased with increasing amount of Fe@SiO(2) nanoparticle doping. The dielectric loss (tanδ) was near 0.020 at a frequency of 1 GHz.

2.
Article in English | MEDLINE | ID: mdl-14598726

ABSTRACT

As a relatively new source of processing energy, microwave energy offers many compelling advantages in materials processing over conventional heat sources. These advantages include greater flexibility, greater speed and energy savings, improved product quality and properties, and synthesis of new materials that cannot be produced by other heating methods. Studies of microwave processing of polymeric materials in the early 1960s led to a successful industrial application in the rubber industry. Since the mid-1980's, there has been a great deal of interest in microwave processing of polymeric materials worldwide. The discipline can be categorized in two major fields: microwave-assisted polymer physics (MAPP) and microwave assisted polymer chemistry (MAPC). This paper offers an overview of the state-of-the-art research on the field of MAPC, including polymer processing (curing of thermosets, processing of thermoplastics, and joining), polymer synthesis, plasma modification of polymer surfaces, plasma polymerization, polymer degradation, and production of nanomaterials. Most of these studies have focused on laboratory-scale, exploratory efforts. Challenges and possible future directions for the commercialization of microwave processing technologies are discussed.


Subject(s)
Microwaves , Polymers , Biocompatible Materials/chemistry , Chemical Phenomena , Chemistry, Physical , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...