Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 275: 116540, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38852338

ABSTRACT

Protein kinases are responsible for a myriad of cellular functions, such as cell cycle, apoptosis, and proliferation. Because of this, kinases make excellent targets for therapeutics. During the process to identify clinical kinase inhibitor candidates, kinase selectivity profiles of lead inhibitors are typically obtained. Such kinome selectivity screening could identify crucial kinase anti-targets that might contribute to drug toxicity and/or reveal additional kinase targets that potentially contribute to the efficacy of the compound via kinase polypharmacology. In addition to kinome panel screening, practitioners also obtain the inhibition profiles of a few non-kinase targets, such as ion-channels and select GPCR targets to identify compounds that might possess potential liabilities. Often ignored is the possibility that identified kinase inhibitors might also inhibit or bind to the other proteins (greater than 20,000) in the cell that are not kinases, which may be relevant to toxicity or even additional mode of drug action. This review highlights various inhibitors, which have been approved by the FDA or are currently undergoing clinical trials, that also inhibit other non-kinase targets. The binding poses of the drugs in the binding sites of the target kinases and off-targets are analyzed to understand if the same features of the compounds are critical for the polypharmacology.


Subject(s)
Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Molecular Structure , Animals , Structure-Activity Relationship
2.
RSC Med Chem ; 15(1): 178-192, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38283221

ABSTRACT

Current treatment options for patients with multiple myeloma (MM) include proteasome inhibitors, anti-CD38 antibodies, and immunomodulatory agents. However, if patients have continued disease progression after administration of these treatments, there are limited options. There is a need for effective targeted therapies of MM. Recent studies have shown that the transforming growth factor-ß activated kinase (TAK1) is upregulated and overexpressed in MM. We have discovered that 6-substituted morpholine or piperazine imidazo[1,2-b]pyridazines, with an appropriate aryl substituent at position-3, inhibit TAK1 at nanomolar concentrations. The lead compound, 26, inhibits the enzymatic activity of TAK1 with an IC50 of 55 nM. Under similar conditions, the known TAK1 inhibitor, takinib, inhibits the kinase with an IC50 of 187 nM. Compound 26 and analogs thereof inhibit the growth of multiple myeloma cell lines MPC-11 and H929 with GI50 values as low as 30 nM. These compounds have the potential to be translated into anti-MM therapeutics.

3.
ChemMedChem ; 19(1): e202300442, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37971283

ABSTRACT

FLT3 is mainly expressed in immune and various cancer cells and is a drug target for acute myeloid leukemia (AML). Recently, FLT3 has also been identified as a potential target for treating chronic pain. Most FLT3 inhibitors (FLT3i) identified to date, including approved drugs such as gilteritinib, midostaurin, ponatinib, quizartinib, and FLT3i in clinical trials, such as quizartinib and crenolanib, also inhibit closely-related kinases that are important for immune (c-KIT), cardiovascular (KDR/VEGFR2, FGFR, PDGFR) or kidney (RET) functions. While the aforementioned FLT3i may increase survival rates in AML, they are neither ideal for AML maintenance therapy nor for non-oncology applications, such as for the treatment of chronic pain, due to their promiscuous inhibition of many kinase anti-targets. Here, we report the identification of new FLT3i compounds that have low activities against kinases that have traditionally been difficult to differentiate from FLT3 inhibition, such as KDR/VEGFR, FGFR, PGFR, c-KIT, and RET. These selective compounds could be valuable chemical probes for studying FLT3 biology in the context of chronic pain and/or may represent good starting points to develop well-tolerated FLT3 therapeutics for non-oncology indications or for maintenance therapy for AML.


Subject(s)
Antineoplastic Agents , Chronic Pain , Leukemia, Myeloid, Acute , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chronic Pain/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , fms-Like Tyrosine Kinase 3/therapeutic use , Proto-Oncogene Proteins c-ret
4.
RSC Med Chem ; 14(9): 1743-1754, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37731695

ABSTRACT

The 3H-pyrazolo[4,3-f]quinoline core, a privileged fusion moiety from quinoline and indazole, facilely synthesized in a one flask multi-component Doebner-Povarov reaction, is a newly described kinase hinge binder. Previous works have demonstrated that the 3H-pyrazolo[4,3-f]quinoline moiety can be tuned, via judicious substitution patterns, to selectively inhibit cancer-associated kinases, such as FLT3 and haspin. A first generation 3H-pyrazolo[4,3-f]quinoline-based haspin inhibitor, HSD972, and FLT3 inhibitor, HSD1169, were previously disclosed as inhibitors of various cancer cell lines. Given the recent revelation that haspin is over-expressed and plays critical proliferative roles in many cancers, and compounds with dual activity against FLT3 and other important kinases are now being actively developed by many groups, we became interested in optimizing the 3H-pyrazolo[4,3-f]quinoline-based compounds to improve activity against both FLT3 and haspin. Herein, we report the discovery of new 3H-pyrazolo[4,3-f]quinoline-based dual FLT3/haspin inhibitor, HSK205. HSK205 has remarkable potencies against FLT3-driven AML cell lines, inhibiting proliferation with GI50 values between 2-25 nM. Western blot analyses of treated AML cells confirm that HSK205 inhibit the phosphorylation of both FLT3 and histone H3 (a haspin target) in cells. While multi-component reactions (MCRs) have been used to make many bioactive molecules, there are very few examples of using MCRs to make compounds that target protein kinases, which have emerged as one of the top drug candidates (especially in oncology). This work highlights our recent efforts to make ultrapotent protein kinase inhibitors using multi-component reactions (especially the Doebner-Povarov reaction).

SELECTION OF CITATIONS
SEARCH DETAIL
...