Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Stapp Car Crash J ; 67: 44-77, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662621

ABSTRACT

The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG's Bear Point range was used for all male and female whole-body tests in this series. The ALF was an outdoor test rig that was driven by a buried explosive charge, to accelerate a platform holding two symmetrically mounted seats. The platform was designed as a large, rigid frame with a deformable center section that could be tuned to simulate the floor deformation of a vehicle during a UBB event. PMHS were restrained with a 5-point harness, common in military vehicle seats. Six-degree-of-freedom motion blocks were fixed to L3, the sacrum, and the left and right iliac wings. A three-degree-of freedom block was fixed to T12. Strain gages were placed on L4 and multiple locations on the pelvis. Accelerometers on the floor and seat of the ALF provided input data for each PMHS' feet and pelvis. Time histories and mean peak responses in z-axis acceleration were similar among the three PMHS groups in this body region. Injury outcomes were different and seemed to be influenced by both sex and size contributions. Small females incurred pelvis injuries in absence of lumbar injures. Midsized males had lumbar vertebral body fractures without pelvis injuries. And large females with injuries had both pelvis and lumbar VB fractures. This study provides evidence supporting the need for female biomechanical testing to generate female response and injury thresholds. Without the inclusion of female PMHS, the differences in the injury patterns between the small female and midsized male groups would not have been recognized. Standard scaling methods assume equivalent injury patterns between the experimental and scaled data. In this study, small female damage occurred in a different anatomical structure than for the midsized males. This is an important discovery for the development of anthropomorphic test devices, injury criteria, and injury mitigating technologies. The clear separation of small female damage results, in combination with seat speeds, suggest that the small female pelvis injury threshold in UBB events lies between 4 - 5 m/s seat speed. No inference can be made about the small female lumbar threshold, other than it is likely at higher speeds and/or over longer duration. Male lumbar spine damage occurred in both the higher- and lower lower-rate tests, indicating the injury threshold would be below the seat pulses tested in these experiments. Large females exhibited injury patterns that reflected both the small female and midsized male groups - with damaged PMHS having fractures in both pelvis and lumbar, and in both higher- and lower- rate tests. The difference in damage patterns between the sex and size groups should be considered in the development of injury mitigation strategies to protect across the full population.


Subject(s)
Blast Injuries , Cadaver , Explosions , Lumbar Vertebrae , Humans , Male , Female , Blast Injuries/physiopathology , Biomechanical Phenomena , Lumbar Vertebrae/injuries , Middle Aged , Adult , Pelvis/injuries , Aged , Manikins , Sex Factors
2.
Stapp Car Crash J ; 67: 112-170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662623

ABSTRACT

Frontal-crash sled tests were conducted to assess submarining protection and abdominal injury risk for midsized male occupants in the rear seat of modern vehicles. Twelve sled tests were conducted in four rear-seat vehicle-bucks with twelve post-mortem human surrogates (PMHS). Select kinematic responses and submarining incidence were compared to previously observed performance of the Hybrid III 50th-percentile male and THOR-50M ATDs (Anthropomorphic Test Devices) in matched sled tests conducted as part of a previous study. Abdominal pressure was measured in the PMHS near each ASIS (Anterior Superior Iliac Spine), in the inferior vena cava, and in the abdominal aorta. Damage to the abdomen, pelvis, and lumbar spine of the PMHS was also identified. In total, five PMHS underwent submarining. Four PMHS, none of which submarined, sustained pelvis fractures and represented the heaviest of the PMHS tested. Submarining of the PMHS occurred in two out of four vehicles. In the matched tests, the Hybrid III never underwent submarining while the THOR-50M submarined in three out of four vehicles. Submarining occurred in vehicles having both conventional and advanced (pretensioner and load limiter) restraints. The dominant factors associated with submarining were related to seat pan geometry. While the THOR-50M was not always an accurate tool for predicting submarining in the PMHS, the Hybrid III could not predict submarining at all. The results of this study identify substantive gaps in frontal-crash occupant protection in the rear seat for midsized males and elucidates the need for additional research for rear-seat occupant protection for all occupants.


Subject(s)
Abdominal Injuries , Accidents, Traffic , Pelvis , Humans , Male , Pelvis/injuries , Abdominal Injuries/prevention & control , Middle Aged , Biomechanical Phenomena , Aged , Cadaver , Seat Belts , Manikins
3.
Vet Ophthalmol ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529836

ABSTRACT

OBJECTIVE: To determine and compare the fixation strength of conjunctival pedicle flaps to cornea achieved via conventional ophthalmic suture and three different adhesive compounds. ANIMALS STUDIED: Ex vivo porcine globes. PROCEDURES: Following a 6 mm wide 500-micron-restricted depth lamellar keratectomy, conjunctival pedicle flaps were secured to the keratectomy site with either 8-0 VICRYL® suture or one of three adhesive products, including Tisseel® bioadhesive, ReSure® synthetic adhesive, or ethyl cyanoacrylate adhesive (n = 10 per surgical group). Adhesive application protocol varied by product based upon adhesive biocompatibility. Corneoconjunctival tissues were then harvested, clamped in a tensile testing device, and loaded at a rate of 1 mm/s under video surveillance until the point of failure. Peak load was determined for each test and used to compare fixation strength between samples. RESULTS: Forty conjunctival flaps were performed, with 6 omitted from evaluation due to dehiscence prior to tensile testing. Of the 34 flaps analyzed, 10 were secured with suture, 10 with cyanoacrylate, 8 with ReSure®, and 6 with Tisseel®. Flaps secured with suture withstood significantly higher applied tensile force compared with cyanoacrylate (p = .02474), ReSure® (p = .00000), and Tisseel® (p = .00002). Flaps secured with cyanoacrylate withstood significantly greater force than those secured with ReSure® and Tisseel® (p = .01194 and 0.01798, respectively). There was no significant difference in fixation strength between ReSure® and Tisseel® glue (p = .95675). CONCLUSIONS: Conjunctival pedicle flap fixation using 8-0 VICRYL® suture fixation was able to withstand significantly greater maximum tensile force compared to ReSure®, Tisseel®, or cyanoacrylate adhesives. Fixation strength achieved with cyanoacrylate adhesive was significantly greater than that achieved with ReSure® or Tisseel®.

4.
Traffic Inj Prev ; 24(sup1): S9-S15, 2023.
Article in English | MEDLINE | ID: mdl-37267011

ABSTRACT

OBJECTIVE: The objectives of this study were to evaluate computationally efficient small female (54.1 kg, 149.9 cm) and midsize male (78.4 kg, 174.9 cm) models with active muscles using volunteer sled test data in a frontal-oblique loading direction and check their response in crash mitigating maneuvers using field test data. METHODS: The Global Human Body Models Consortium small female (F05-OS+Active) and midsize male (M50-OS+Active) simplified occupant models with active musculature were used in this study. The data from a total of 48 previously published sled test experiments were used to simulate a total of 16 simulations. The experimental study recorded occupant responses of six small female and six midsize male volunteers (n = 12 total) in two muscle conditions (relaxed and braced) at two acceleration pulses representing pre-crash braking (1.0 g) and a low-speed impact (2.5 g). Each model's kinematics and reaction forces were compared with experimental data. Along with sled test simulations, both of these models were simulated in abrupt braking, lane change, and turn and brake events using literature data. A total of 36 field test simulations were carried out. A CORA analysis was carried out using reaction load and displacement time-history data for sled test simulations and head CG displacement time-history was used for field test simulations. RESULTS: The occupant peak forward and lateral excursion results of both active models reasonably matched the volunteer data in the low-speed sled test simulations for both pulse severities. The differences between the active and control models were statistically significant (p-value < 0.05) based on the results of Wilcoxon signed-rank tests using peak forward and lateral excursion data. The average CORA scores calculated for the sled test (sled test: M50-OS+Active= 0.543, male control= 0.471, F05-OS+Active= 0.621, female control= 0.505) and field test (M50-OS+Active= 0.836, male control= 0.466, F05-OS+Active= 0.832, female control= 0.787) simulations were higher for active models than control. CONCLUSIONS: The responses of the F05-OS+Active and M50-OS+Active models were better than control models based on overall CORA scores calculated using both sled and field tests. The results highlight their ability to predict occupant kinematics in crash-mitigating maneuvers and low-speed impacts in the frontal, lateral and frontal-oblique directions.


Subject(s)
Acceleration , Accidents, Traffic , Humans , Male , Female , Muscles/physiology , Biomechanical Phenomena , Human Body
5.
Traffic Inj Prev ; 24(sup1): S41-S46, 2023.
Article in English | MEDLINE | ID: mdl-37267018

ABSTRACT

OBJECTIVE: The purpose of this study was to provide a whole-body biofidelity assessment of the Hybrid III (HIII) and THOR 50th percentile male anthropomorphic test devices (ATDs) during frontal sled tests, incorporating data from kinematics, chest deflection, and test buck reaction load cells. Additionally, the accuracy of the injury risk prediction capabilities for each ATD was evaluated against injuries observed in matched postmortem human surrogate (PMHS) tests. METHODS: Sled tests, designed to simulate a United States New Car Assessment Program (US-NCAP) frontal test, were conducted using the HIII, THOR, and 8 approximately 50th percentile male PMHS under 3 restraint conditions. The test buck was instrumented with load cells on the steering column, knee bolster supports, and foot supports. ATD and PMHS reaction force-time histories were quantitatively compared using the ISO/TS-18571 objective rating metric. Previously published biofidelity analyses of kinematic and chest deflection data from the same tests were combined with the reaction force analyses to perform an overall assessment of the comparative biofidelity of each ATD. Injury risk predictions from existing HIII and proposed THOR injury risk curves for the US-NCAP were compared to observed injuries. RESULTS: For the reaction forces, the HIII and THOR had similar levels of biofidelity on average, except for 2 locations. The HIII produced more biofidelic knee bolster support forces, and the THOR lap belt forces were more biofidelic. The comparative biofidelity of the ATDs also varied by body region. The THOR head response was more biofidelic, whereas the HIII thorax and lower extremity responses had higher biofidelity. When all body regions were pooled, the HIII was more biofidelic, but differences between ATDs were generally small. Both ATDs were able to predict the observed injuries, except for the HIII chest, HIII neck, and THOR neck, all of which underpredicted PMHS injury outcomes. CONCLUSIONS: This study revealed that biofidelity assessed through response time histories and accuracy of injury risk predictions do not always align. Specifically, the HIII had marginally better time history biofidelity, whereas the THOR had better injury prediction. However, not all THOR responses could be fully assessed, so more work is needed to assess the THOR in complex loading environments.


Subject(s)
Accidents, Traffic , Neck , Humans , Male , Cadaver , Neck/physiology , Thorax/physiology , Restraint, Physical , Biomechanical Phenomena , Manikins
6.
J Biomech ; 156: 111670, 2023 07.
Article in English | MEDLINE | ID: mdl-37352737

ABSTRACT

The material and morphometric properties of trabecular bone have been studied extensively in bones bearing significant weight, such as the appendicular long bones and spine. Less attention has been devoted to the ribs, where quantification of material properties is vital to understanding thoracic injury. The objective of this study was to quantify the compressive material properties of human rib trabecular bone and assess the effects of loading rate, age, and morphology on the material properties. Material properties were quantified via uniaxial compression tests performed on trabecular bone samples at two loading rates: 0.005 s-1 and 0.5 s-1. Morphometric parameters of each sample were quantified before testing using micro-computed tomography. Rib trabecular bone material properties were lower on average compared to trabecular bone from other anatomical locations. Morphometric parameters indicated an anisotropic structure with low connectivity and a sparser density of trabeculae in the rib compared to other locations. No significant differences in material properties were observed between the tested loading rates. Material properties were only significantly correlated with age at the 0.005 s-1 loading rate, and no morphometric parameter was significantly correlated with age. Trabecular separation and thickness were most strongly correlated with the material properties, indicating the sparser trabecular matrix likely contributed to the lower material property values compared to other sites. The novel trabecular bone material properties reported in this study can be used to improve the thoracic response and injury prediction of computational models.


Subject(s)
Cancellous Bone , Spine , Humans , X-Ray Microtomography , Cancellous Bone/diagnostic imaging , Ribs/diagnostic imaging , Pressure , Bone Density
7.
Traffic Inj Prev ; 23(sup1): S44-S49, 2022.
Article in English | MEDLINE | ID: mdl-36107808

ABSTRACT

OBJECTIVE: The objective of this study was to implement active muscles in a computationally efficient small female finite element model (54.1 kg, 149.9 cm) suitable for predicting occupant response during precrash braking and low-speed frontal sled tests. We further calibrate and compare its results against an average male model (78.4 kg, 174.9 cm) using the same developmental approach. METHODS: The active female model (F05-OS + Active) was developed by adding active skeletal muscle elements (n = 232) to the Global Human Body Models Consortium (GHBMC) 5th percentile female simplified occupant model (F05-OS v2.3). The muscle properties and physiological cross-sectional area (PCSA) for each muscle were taken from the M50-OS + Active v2.3 model but PCSAs were mass scaled to a 5th percentile female. A total of 8 simulations were conducted; 2 acceleration pulses (1.0 g and 2.5 g), 2 models (F05-OS + Active and M50-OS + Active), and 2 muscle states (activation and control; e.g., no activation). Each model's kinematics and reaction forces were compared with experimental data. Occupant responses of 6 5th percentile female and 6 50th percentile male volunteers (n = 12 total) were used. The data depict occupant response in precrash braking and low-speed frontal sled tests in a rigid test buck. All procedures were reviewed and approved by the Virginia Tech institutional review board. Each volunteer was in a relaxed state before the applied acceleration. RESULTS: The occupant peak forward excursion results of both active models reasonably match the volunteer data for both pulse severities. The differences between active and control models were found to be significant by Wilcoxon signed-rank test (p < .05). The reaction loads of the active and control models lie within the experimental corridors. CONCLUSIONS: To the authors' knowledge, this study is the first to concurrently calibrate and compare equivalently developed computational models of females and males in precrash and low-speed impacts. The modeling approach is capable of capturing the varied kinematics observed in the relaxed condition, which may be an important factor in studies focused on the effects of low-g vehicle dynamics on the occupant position. Finally, the computationally efficient modeling approach is imperative given the long duration (>500 ms) of the events simulated.


Subject(s)
Accidents, Traffic , Human Body , Humans , Male , Female , Calibration , Acceleration , Muscle, Skeletal/physiology , Biomechanical Phenomena
8.
J Mech Behav Biomed Mater ; 122: 104668, 2021 10.
Article in English | MEDLINE | ID: mdl-34265671

ABSTRACT

The objectives of this study were to develop novel methods for quantifying human rib cortical bone material properties in compression and to compare the compressive material property data to existing tensile data for matched subjects. Cylindrical coupons were obtained from the rib cortical bone of 30 subjects (M = 19, F = 11) ranging from 18 to 95 years of age (Avg. = 48.5 ± 24.3). Two coupons were obtained from each subject. One coupon was tested in compression at 0.005 strain/s, while the other coupon was tested in compression at 0.5 strain/s. Load and displacement data were recorded so that the elastic modulus, yield stress, yield strain, ultimate stress, ultimate strain, elastic strain energy density (SED), plastic SED, and total SED could be calculated. All compressive material properties were significantly different between the two loading rates. An ANOVA revealed that sex alone had no significant effect on the compressive material properties. The interaction between sex and age was significant for some material properties, but this may have been a consequence of the lack of older females in the subject pool. None of the compressive material properties were significantly correlated with age, but were more correlated with sample density. This finding differed for the tensile material properties, which showed stronger correlations with age. When comparing between tension and compression, significant differences were observed for all material properties except for the total SED, once the effects of loading rate and age had been accounted for. This was the first study to quantify the material properties of human rib cortical bone in compression. The results of this study demonstrated that rib and thorax finite element models should consider the effects of loading rate, loading mode, and age when incorporating material properties published in the literature.


Subject(s)
Cortical Bone , Ribs , Compressive Strength , Elastic Modulus , Female , Humans , Stress, Mechanical , Thorax
9.
J Mech Behav Biomed Mater ; 116: 104358, 2021 04.
Article in English | MEDLINE | ID: mdl-33610029

ABSTRACT

Rib fractures are common thoracic injuries in motor vehicle crashes. Several human finite element (FE) human models have been created to numerically assess thoracic injury risks. However, the accurate prediction of rib biomechanical response has shown to be challenging due to human variation and modeling approaches. The main objective of this study was to better understand the role of modeling approaches on the biomechanical response of human ribs in anterior-posterior bending. Since the development of subject specific rib models is a time-consuming process, the second objective of this study was to develop an accurate morphing approach to quickly generate high quality subject specific rib meshes. The exterior geometries and cortical-trabecular boundaries of five human 6th-level ribs were extracted from CT-images. One rib mesh was developed in a parametric fashion and the other four ribs were developed with an in-house morphing algorithm. The morphing algorithm automatically defined landmarks on both the periosteal and endosteal boundaries of the cortical layer, which were used to morph the template nodes to target geometries. Three different cortical bone material models were defined based on the stress-strain data obtained from subject-specific tensile coupon tests for each rib. Full rib anterior-posterior bending tests were simulated based on data recorded in testing. The results showed similar trends to test data with some sensitivity relative to the material modeling approach. Additionally, the FE models were substantially more resistant to failure, highlighting the need for better techniques to model rib fracture. Overall, the results of this work can be used to improve the biofidelity of human rib finite element models.


Subject(s)
Rib Fractures , Ribs , Accidents, Traffic , Biomechanical Phenomena , Cortical Bone , Finite Element Analysis , Humans , Models, Biological
10.
Vet Surg ; 50(3): 622-632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33404123

ABSTRACT

OBJECTIVE: To compare the stiffness of constructs fixed with a type II external skeletal fixator (ESF) or a 3.5-mm locking compression plate (LCP) in axial compression and bending with a fracture gap model. STUDY DESIGN: Quasi-static four-point bending and axial compression tests. SAMPLE POPULATION: Ten LCP and 10 ESF immobilizing epoxy cylinders with a 40-mm fracture gap. METHODS: Five constructs of each type were tested in nondestructive mediolateral (ML) four-point bending and then rotated and tested in nondestructive craniocaudal (CC) four-point bending. Five additional constructs of each type were tested in nondestructive axial compression. Stiffness was compared between loading modes by construct type and between construct types by loading mode. RESULTS: Type II ESF were stiffer than LCP in ML bending (difference, 1474 N/mm, P < .0001) and in axial compression (difference, 458 N/mm, P = .008) but not in CC bending (P = .1673). Type II ESF were stiffer in ML bending than in CC bending (difference, 999 N/m, P < .0001), while LCP were stiffer in CC bending than in ML bending (difference, 634 N/mm, P < .0001). CONCLUSION: Type II ESF generated stiffer constructs compared with LCP in ML bending and in axial compression without a difference in CC bending. External skeletal fixator and LCP bending stiffness varied by loading direction. CLINICAL SIGNIFICANCE: A type II ESF should be considered in a comminuted fracture requiring increased stability in ML and axial directions.


Subject(s)
Bone Plates/veterinary , Fracture Fixation, Internal/veterinary , Fractures, Bone/veterinary , Animals , Biomechanical Phenomena , Fracture Fixation, Internal/instrumentation , Fractures, Bone/surgery , Fractures, Comminuted/surgery , Fractures, Comminuted/veterinary
12.
J Mech Behav Biomed Mater ; 102: 103410, 2020 02.
Article in English | MEDLINE | ID: mdl-31655338

ABSTRACT

The objective of this study was to evaluate the effects of sex, loading rate, and age on the tensile material properties of human rib cortical bone over a wide range of subject demographics. Sixty-one (n = 61) subjects (M = 32, F = 29) ranging in age from 17 to 99 years of age (Avg. = 56.4 ±â€¯26.2 yrs) were used in this study. Two rectangular coupons of cutaneous rib cortical bone were obtained from each subject and milled into dog-bone coupons for testing. For each subject, one coupon was tested to failure in tension on a material testing system at a targeted strain rate of 0.005 strain/s, while the other coupon was tested at 0.5 strain/s. A reaction load cell was used to measure axial load, and an extensometer was used to measure displacement within the gage length of the coupon. Data were obtained from fifty-eight (n = 58) subjects at 0.005 strain/s and fifty-eight (n = 58) subjects at 0.5 strain/s, with fifty-five (n = 55) matched pairs. The elastic modulus, yield stress, yield strain, failure stress, failure strain, ultimate stress, elastic strain energy density (SED), plastic SED, and total SED were then calculated for each test. There were no significant differences in material properties between sexes and no significant interactions between age and sex. In regard to the differences in material properties with respect to loading rate, yield stress, yield strain, failure stress, ultimate stress, elastic SED, plastic SED, and total SED were significantly lower at 0.005 strain/s compared to 0.5 strain/s. Spearman correlation analyses showed that all material properties had significant negative correlations with age at 0.005 strain/s except modulus. At 0.5 strain/s, all material properties except yield strain had significant negative correlations with age. Although the results revealed that the material properties of human rib cortical bone varied significantly with respect to chronological age, the R2 values only ranged from 0.15 to 0.62, indicating that there may be other underlying variables that better account for the variance within a given population. This is the first study to analyze the effects of sex, loading rate, and age on tensile material properties of human rib cortical bone using a reasonably large sample size. Overall, the results of this study provide data that will allow FEMs to better model and assess differences in the material response of the rib cage for nearly all vehicle occupants of driving age.


Subject(s)
Cortical Bone , Ribs , Animals , Biomechanical Phenomena , Dogs , Elastic Modulus , Humans , Stress, Mechanical , Tensile Strength
13.
Traffic Inj Prev ; 20(sup2): S88-S95, 2019.
Article in English | MEDLINE | ID: mdl-31589083

ABSTRACT

Objective: The current state of the art human body models (HBMs) underpredict the number of fractured ribs. Also, it has not been shown that the models can predict the fracture locations. Efforts have been made to create subject specific rib models for fracture prediction, with mixed results. The aim of this study is to evaluate if subject-specific finite element (FE) rib models, based on state-of-the-art clinical CT data combined with subject-specific material data, can predict rib stiffness and fracture location in anterior-posterior rib bending.Method: High resolution clinical CT data was used to generate detailed subject-specific geometry for twelve FE models of the sixth rib. The cortical bone periosteal and endosteal surfaces were estimated based on a previously calibrated cortical bone mapping algorithm. The cortical and the trabecular bone were modeled using a hexa-block algorithm. The isotropic material model for the cortical bone in each rib model was assigned subject-specific material data based on tension coupon tests. Two different modeling strategies were used for the trabecular bone.The capability of the FE model to predict fracture location was carried out by modeling physical dynamic anterior-posterior rib bending tests. The rib model predictions were directly compared to the results from the tests. The predicted force-displacement time history, strain measurements at four locations, and rotation of the rib ends were compared to the results from the physical tests by means of CORA analysis. Rib fracture location in the FE model was estimated as the position for the element with the highest first principle strain at the time corresponding to rib fracture in the physical test.Results: Seven out of the twelve rib models predicted the fracture locations (at least for one of the trabecular modeling strategies) and had a force-displacement CORA score above 0.65. The other five rib models, had either a poor force-displacement CORA response or a poor fracture location prediction. It was observed that the stress-strain response for the coupon test for these five ribs showed significantly lower Young's modulus, yield stress, and elongation at fracture compared to the other seven ribs.Conclusion: This study indicates that rib fracture location can be predicted for subject specific rib models based on high resolution CT, when loaded in anterior-posterior bending, as long as the rib's cortical cortex is of sufficient thickness and has limited porosity. This study provides guidelines for further enhancements of rib modeling for fracture location prediction with HBMs.


Subject(s)
Accidents, Traffic , Models, Biological , Rib Fractures/etiology , Ribs/physiopathology , Finite Element Analysis , Humans , Mechanical Phenomena , Rib Fractures/diagnostic imaging , Rib Fractures/physiopathology , Ribs/diagnostic imaging , Rotation , Tomography, X-Ray Computed
14.
Traffic Inj Prev ; 19(sup2): S40-S47, 2018.
Article in English | MEDLINE | ID: mdl-30543308

ABSTRACT

OBJECTIVE: The objective of this research was to compare the kinetics and predicted injury risks of the Hybrid III (HIII) and Test device for Human Occupant Restraint (THOR)-M necks during full-scale frontal sled tests under 3 safety restraint conditions: knee bolster (KB), knee bolster and steering wheel airbag (KB/SWAB), and knee bolster airbag and steering wheel airbag (KBAB/SWAB). METHODS: Twelve sled tests were performed for the HIII and THOR-M, and 8 matched sled tests were performed using postmortem human surrogates (PMHSs). The tests were designed to match the 2012 Toyota Camry New Car Assessment Program (NCAP) full-scale crash test. Upper and lower neck forces and moments were collected from the HIII and THOR-M load cells. Inverse dynamics was used to calculate PMHS upper neck forces and moments from acceleration data until the time of head contact. The PMHSs experienced head contact with the SWAB before appreciable neck loading occurred. Therefore, PMHS neck forces and moments were only compared to the HIII and THOR-M for the KB condition. Neck injury risks were calculated for the HIII and THOR-M and were compared to the injuries observed for the PMHSs. RESULTS: The HIII had greater upper and lower neck shear forces than the THOR-M, whereas both surrogates had similar upper and lower neck axial forces. The HIII also experienced greater peak upper neck bending moments than the THOR-M, which experienced negligible upper neck bending moments. Before head contact, the PMHSs experienced upper neck flexion, and the HIII experienced extension. The HIII and THOR-M injury risk curves predicted less than a 50% risk of an Abbreviated Injury Scale (AIS) 3+ injury. No AIS 3+ neck injuries were observed for the PMHS tests, but at least one AIS 2 injury was observed per condition. CONCLUSIONS: The results of this study showed that the HIII and THOR-M had different neck kinetics for these restraint conditions. In particular, the THOR-M experienced lower upper neck shear forces and bending moments. These differences are likely due to the very different neck designs of the anthropomorphic test dummies (ATDs), particularly the increased compliance of the THOR-M neck. Despite these differences, both ATDs still predicted a similar risk of AIS 3+ neck injury.


Subject(s)
Neck Injuries/physiopathology , Neck/physiology , Protective Devices/statistics & numerical data , Abbreviated Injury Scale , Humans , Kinetics , Manikins , Neck Injuries/pathology , Risk
15.
J Mech Behav Biomed Mater ; 87: 240-255, 2018 11.
Article in English | MEDLINE | ID: mdl-30096512

ABSTRACT

In motor vehicle collisions (MVCs), liver injuries are one of the most frequently reported types of abdominal organ trauma. Although finite element models are utilized to evaluate the risk of sustaining an abdominal organ injury in MVCs, these models must be validated based on biomechanical data in order to accurately assess injury risk. Given that previous studies that have quantified the tensile failure properties of human liver parenchyma have been limited to testing at 48 h postmortem, it is currently unknown how the material properties change between time of death and 48 h postmortem. Therefore, the objective of this study was to quantify the effects of postmortem degradation on the tensile material properties of bovine liver parenchyma with increasing postmortem time when stored in DMEM or saline. A total of 148 uniaxial tension tests were successfully conducted on parenchyma samples of fourteen bovine livers acquired immediately after death. Liver tissue was submerged in DMEM or saline and kept cool during sample preparation and storage. Twelve livers were stored as large blocks of tissue, while two livers were stored as small blocks and slices. Tension tests were performed on multiple dog-bone samples from each liver at three time points: ~6 h, ~24 h, and ~48 h postmortem. The data were then analyzed using a Linear Mixed Effect Model to determine if there were significant changes in the failure stress, failure strain, and modulus with respect to postmortem time. The results of the current study showed that the failure strain of bovine liver parenchyma decreased significantly between 6 h and 48 h after death when stored as large blocks in saline and refrigerated. Conversely, neither the failure stress nor failure strain changed significantly with respect to postmortem time when stored as large blocks in DMEM. The modulus did not change significantly with respect to postmortem time for tissue stored as large blocks in either saline or DMEM. Cellular disruption increased with postmortem time for tissue stored as large blocks, with tissue stored in saline showing the greatest increase at each time point. In addition, preliminary results indicated that reducing the tissue storage size had a negative effect on the material properties and cellular architecture. Overall, this study illustrated that the effects of postmortem liver degradation varied with respect to the preservation fluid, storage time, and storage block size.


Subject(s)
Liver/cytology , Materials Testing/methods , Specimen Handling , Stress, Mechanical , Animals , Cattle , Finite Element Analysis , Postmortem Changes , Tensile Strength , Time Factors
16.
Traffic Inj Prev ; 19(sup1): S50-S58, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29584475

ABSTRACT

OBJECTIVE: The objective of this research was to compare the occupant kinematics of the Hybrid III (HIII), THOR-M, and postmortem human surrogates (PMHS) during full-scale frontal sled tests under 3 safety restraint conditions: knee bolster (KB), knee bolster and steering wheel airbag (KB/SWAB), and knee bolster airbag and steering wheel airbag (KBAB/SWAB). METHODS: A total of 20 frontal sled tests were performed with at least 2 tests performed per restraint condition per surrogate. The tests were designed to match the 2012 Toyota Camry New Car Assessment Program (NCAP) full-scale crash test. Rigid polyurethane foam surrogates with compressive strength ratings of 65 and 19 psi were used to simulate the KB and KBAB, respectively. The excursions of the head, shoulders, hips, knees, and ankles were collected using motion capture. Linear acceleration and angular velocity data were also collected from the head, thorax, and pelvis of each surrogate. Time histories were compared between surrogates and restraint conditions using ISO/TS 18571. RESULTS: All surrogates showed some degree of sensitivity to changes in restraint condition. For example, the use of a KBAB decreased the pelvis accelerations and the forward excursions of the knees and hips for all surrogates. However, these trends were not observed for the thorax, shoulders, and head, which showed more sensitivity to the presence of a SWAB. The average scores computed using ISO/TS 18571 for the HIII/PMHS and THOR-M/PMHS comparisons were 0.527 and 0.518, respectively. The HIII had slightly higher scores than the THOR-M for the excursions (HIII average = 0.574; THOR average = 0.520). However, the THOR-M had slightly higher scores for the accelerations and angular rates (HIII average = 0.471; THOR average = 0.516). CONCLUSIONS: The data from the current study showed that both KBABs and SWABs affected the kinematics of all surrogates during frontal sled tests. The results of the objective rating analysis indicated that the HIII and THOR-M had comparable overall biofidelity scores. The THOR-M slightly outperformed the HIII for the acceleration and angular velocity data. However, the HIII scored slightly better than the THOR-M for the excursion data. The most notable difference in biofidelity was for the knee excursions, where the HIII had a much higher average ISO score. Only the biofidelity of the HIII and THOR-M with regard to occupant kinematics was evaluated in this study; therefore, future work will evaluate the biofidelity of the ATDs in terms of lower extremity loading, thoracic response, and neck loading.


Subject(s)
Accidents, Traffic/statistics & numerical data , Manikins , Restraint, Physical/methods , Acceleration , Ankle/physiology , Biomechanical Phenomena , Cadaver , Head/physiology , Hip/physiology , Humans , Knee/physiology , Male , Pelvis/physiology , Shoulder/physiology , Thorax/physiology , Weight-Bearing/physiology
17.
Stapp Car Crash J ; 62: 1-65, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30608992

ABSTRACT

A total of 20 full-scale frontal sled tests were conducted using the Hybrid III (HIII), THOR-M and post-mortem human surrogates (PMHSs) to evaluate the thoracic biofidelity of the HIII and THOR-M under various belted restraint conditions. Each surrogate was tested under three belted restraint conditions: knee bolster, knee bolster and steering wheel airbag, and knee bolster airbag and steering wheel airbag. In order to assess the relative biofidelity of each ATD, external thoracic deflections were quantitatively compared between the ATDs and PMHSs using an objective rating metric. The HIII had slightly higher biofidelity than the THOR-M for the external thoracic deflections. Specifically, the THOR-M lower chest was more compliant compared to the other surrogates. However, the THOR-M exhibited expansion of the lower chest opposite belt loading, which was also observed to some degree in the PMHSs. The efficacy of the current injury risk prediction instrumentation and criteria were also evaluated for each surrogate. The THOR-M and its proposed injury risk criteria predicted the injuries observed in the PMHS tests better than the HIII. The PMHS injury criteria over-predicted the amount of chest deflection necessary to produce a severe injury and, consequently, under-predicted injury risk. The results of this study indicate that further testing should be performed to evaluate the biofidelity of the THOR-M thorax under more conditions. Furthermore, current thoracic injury risk criteria, which were developed using censored data, may not be effective at predicting injuries for all restraints and experimental conditions.


Subject(s)
Accidents, Traffic , Air Bags , Thoracic Injuries , Biomechanical Phenomena , Cadaver , Humans , Manikins , Thoracic Injuries/etiology
18.
Traffic Inj Prev ; 17 Suppl 1: 141-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27586115

ABSTRACT

OBJECTIVE: The objective of this study was to quantify the effects of active muscles (e.g. conscious bracing, resting tone, and reflex response) and acceleration severity on the neck forces and moments generated during low-speed frontal sled tests with adult male human volunteers and post mortem human surrogates (PMHSs). METHODS: A total of 24 frontal sled tests were analyzed including male volunteers of approximately 50th percentile height and weight (n = 5) and PMHSs (n = 2). The tests were performed at two acceleration severities: low (∼2.5 g, Δv ≈ 5 kph) and medium (∼5.0 g, Δv ≈ 10 kph). Each volunteer was exposed to two impulses at each severity, one relaxed and one braced, while each PMHS was exposed to one impulse at each severity. Linear acceleration and angular velocity of the head were measured at a sampling rate of 20kHz, then filtered using SAE Channel Frequency Class 180 and 60, respectively, and transformed to the head center of gravity (CG). The location of the head CG, external auditory meatus, and occipital condyle (OC) were approximated using pretest photos and literature values. Neck forces (Fx and Fz) and sagittal plane moments (My) were calculated at the OC by applying the equations of dynamic equilibrium to the head. RESULTS: Peak Fx, Fz, and My increased significantly with increasing acceleration severity (p < 0.1). Minimal differences were observed between the magnitudes of the peak forces and moments for each subject type. Qualitatively, differences in the timing of peak neck forces and moments and the overall shape of the time histories were evident. Maximum Fx, Fz, and My occurred earliest in the event for the braced volunteers and latest for the PMHSs. However, these differences were not supported statistically for the volunteers (p > 0.05). The timing of neck loading was visibly augmented by the increased stiffness of the volunteer necks as a result of muscle activation. Although differences were observed between the volunteer muscle conditions, the volunteer subsets were more similar to each other than the PMHSs. CONCLUSIONS: This study examined the effects of active muscles, in the form of conscious and reflexive muscle activity, on the biomechanical response of occupants in low-speed frontal sled tests. Although active bracing did not result in significantly different peak neck loads or moments, the timing of these peak values were affected by muscle condition. The findings of this study provide insight to the kinetics experienced during low-speed sled tests and are important to consider when refining and validating computational models and ATDs used to assess injury risk in automotive collisions.


Subject(s)
Acceleration , Accidents, Traffic/statistics & numerical data , Neck/physiology , Aged , Biomechanical Phenomena , Cadaver , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult
19.
Traffic Inj Prev ; 17 Suppl 1: 131-40, 2016 09.
Article in English | MEDLINE | ID: mdl-27586114

ABSTRACT

OBJECTIVE: The purpose of this study was to obtain non-censored rib fracture data due to three-point belt loading during dynamic frontal post-mortem human surrogate (PMHS) sled tests. The PMHS responses were then compared to matched tests performed using the Hybrid-III 50(th) percentile male ATD. METHODS: Matched dynamic frontal sled tests were performed on two male PMHSs, which were approximately 50(th) percentile height and weight, and the Hybrid-III 50(th) percentile male ATD. The sled pulse was designed to match the vehicle acceleration of a standard sedan during a FMVSS-208 40 kph test. Each subject was restrained with a 4 kN load limiting, driver-side, three-point seatbelt. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour, anterior-posterior sternum deflection, and maximum anterior-posterior chest deflection for all test subjects. The internal sternum deflection of the ATD was quantified with the sternum potentiometer. For the PMHS tests, a total of 23 single-axis strain gages were attached to the bony structures of the thorax, including the ribs, sternum, and clavicle. In order to create a non-censored data set, the time history of each strain gage was analyzed to determine the timing of each rib fracture and corresponding timing of each AIS level (AIS = 1, 2, 3, etc.) with respect to chest deflection. RESULTS: Peak sternum deflection for PMHS 1 and PMHS 2 were 48.7 mm (19.0%) and 36.7 mm (12.2%), respectively. The peak sternum deflection for the ATD was 20.8 mm when measured by the chest potentiometer and 34.4 mm (12.0%) when measured by the chestband. Although the measured ATD sternum deflections were found to be well below the current thoracic injury criterion (63 mm) specified for the ATD in FMVSS-208, both PMHSs sustained AIS 3+ thoracic injuries. For all subjects, the maximum chest deflection measured by the chestband occurred to the right of the sternum and was found to be 83.0 mm (36.0%) for PMHS 1, 60.6 mm (23.9%) for PMHS 2, and 56.3 mm (20.0%) for the ATD. The non-censored rib fracture data in the current study (n = 2 PMHS) in conjunction with the non-censored rib fracture data from two previous table-top studies (n = 4 PMHS) show that AIS 3+ injury timing occurs prior to peak sternum compression, prior to peak maximum chest compression, and at lower compressions than might be suggested by current PMHS thoracic injury criteria developed using censored rib fracture data. In addition, the maximum chest deflection results showed a more reasonable correlation between deflection, rib fracture timing, and injury severity than sternum deflection. CONCLUSIONS: Overall, these data provide compelling empirical evidence that suggests a more conservative thoracic injury criterion could potentially be developed based on non-censored rib fracture data with additional testing performed over a wider range of subjects and loading conditions.


Subject(s)
Accidents, Traffic/statistics & numerical data , Rib Fractures/etiology , Seat Belts , Thorax/physiology , Acceleration , Biomechanical Phenomena , Cadaver , Humans , Male , Manikins , Thoracic Injuries/etiology , Weight-Bearing/physiology
20.
Stapp Car Crash J ; 59: 445-520, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26660754

ABSTRACT

A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle. Load is transmitted through the surrogates in a caudal-to-cranial sequential fashion. Damage to the PMHS lower extremities begins within 2 ms after the initiation of foot/floor motion. The Hybrid III cannot assume the posture of the PMHS in rigid seats and exhibits a stiffer overall response compared to the PMHS. The ATD does not mimic the kinematic response of the PMHS lower extremities. Further, the Hybrid III does not have the capability to predict the potential for injury in the high-rate, vertical loading environment. A new ATD dedicated to under-body blast is needed to assist in the effort to mitigate injuries sustained by the mounted soldier.


Subject(s)
Ankle Injuries , Blast Injuries , Cadaver , Fractures, Bone , Manikins , Pelvic Bones/injuries , Pelvis/injuries , Accelerometry , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Humans , Male , Middle Aged , Personal Protective Equipment , Warfare
SELECTION OF CITATIONS
SEARCH DETAIL
...