Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 05 23.
Article in English | MEDLINE | ID: mdl-31115334

ABSTRACT

Detecting rapid, coincident changes across sensory modalities is essential for recognition of sudden threats or events. Using two-photon calcium imaging in identified cell types in awake, head-fixed mice, we show that, among the basic features of a sound envelope, loud sound onsets are a dominant feature coded by the auditory cortex neurons projecting to primary visual cortex (V1). In V1, a small number of layer 1 interneurons gates this cross-modal information flow in a context-dependent manner. In dark conditions, auditory cortex inputs lead to suppression of the V1 population. However, when sound input coincides with a visual stimulus, visual responses are boosted in V1, most strongly after loud sound onsets. Thus, a dynamic, asymmetric circuit connecting AC and V1 contributes to the encoding of visual events that are coincident with sounds.


Subject(s)
Auditory Cortex/physiology , Interneurons/physiology , Visual Cortex/physiology , Visual Perception/physiology , Acoustic Stimulation , Animals , Evoked Potentials, Visual , Mice , Photic Stimulation
2.
Nat Commun ; 10(1): 1479, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30931939

ABSTRACT

Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their spectro-temporal content recruit different levels of population activity in mouse auditory cortex. When using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches the salience parameter of a reinforcement learning model used to analyze learning speed. We test an essential prediction of this model by training mice to discriminate light-sculpted optogenetic activity patterns in auditory cortex, and verify that cortical recruitment causally determines association or overshadowing of the stimulus components. This demonstrates that cortical recruitment underlies major aspects of stimulus salience during reinforcement learning.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Discrimination Learning/physiology , Reinforcement, Psychology , Animals , Cerebral Cortex/physiology , Cues , Learning/physiology , Mice , Optogenetics
3.
Nat Commun ; 7: 12682, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27580932

ABSTRACT

Sound recognition relies not only on spectral cues, but also on temporal cues, as demonstrated by the profound impact of time reversals on perception of common sounds. To address the coding principles underlying such auditory asymmetries, we recorded a large sample of auditory cortex neurons using two-photon calcium imaging in awake mice, while playing sounds ramping up or down in intensity. We observed clear asymmetries in cortical population responses, including stronger cortical activity for up-ramping sounds, which matches perceptual saliency assessments in mice and previous measures in humans. Analysis of cortical activity patterns revealed that auditory cortex implements a map of spatially clustered neuronal ensembles, detecting specific combinations of spectral and intensity modulation features. Comparing different models, we show that cortical responses result from multi-layered nonlinearities, which, contrary to standard receptive field models of auditory cortex function, build divergent representations of sounds with similar spectral content, but different temporal structure.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Cochlear Nerve/physiology , Hearing/physiology , Animals , Cochlear Nerve/cytology , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Neurons/physiology , Sound
4.
Nature ; 528(7582): 358-63, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26649821

ABSTRACT

Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.


Subject(s)
Artifacts , Neural Pathways/physiology , Optogenetics , Animals , Courtship , Female , Finches/physiology , Homeostasis , Learning/physiology , Male , Motor Cortex/cytology , Motor Cortex/injuries , Motor Cortex/physiology , Movement/physiology , Neostriatum/cytology , Neostriatum/injuries , Neostriatum/physiology , Optogenetics/methods , Psychomotor Performance/physiology , Rats, Long-Evans , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...