Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Virol ; 94(16)2020 07 30.
Article in English | MEDLINE | ID: mdl-32522851

ABSTRACT

Picornaviruses have both asexual and sexual RNA replication mechanisms. Asexual RNA replication mechanisms involve one parental template, whereas sexual RNA replication mechanisms involve two or more parental templates. Because sexual RNA replication mechanisms counteract ribavirin-induced error catastrophe, we selected for ribavirin-resistant poliovirus to identify polymerase residues that facilitate sexual RNA replication mechanisms. We used serial passage in ribavirin, beginning with a variety of ribavirin-sensitive and ribavirin-resistant parental viruses. Ribavirin-sensitive virus contained an L420A polymerase mutation, while ribavirin-resistant virus contained a G64S polymerase mutation. A G64 codon mutation (G64Fix) was used to inhibit emergence of G64S-mediated ribavirin resistance. Revertants (L420) or pseudorevertants (L420V and L420I) were selected from all independent lineages of L420A, G64Fix L420A, and G64S L420A parental viruses. Ribavirin resistance G64S mutations were selected in two independent lineages, and novel ribavirin resistance mutations were selected in the polymerase in other lineages (M299I, M323I, M392V, and T353I). The structural orientation of M392, immediately adjacent to L420 and the polymerase primer grip region, led us to engineer additional polymerase mutations into poliovirus (M392A, M392L, M392V, K375R, and R376K). L420A revertants and pseudorevertants (L420V and L420I) restored efficient viral RNA recombination, confirming that ribavirin-induced error catastrophe coincides with defects in sexual RNA replication mechanisms. Viruses containing M392 mutations (M392A, M392L, and M392V) and primer grip mutations (K375R and R376K) exhibited divergent RNA recombination, ribavirin sensitivity, and biochemical phenotypes, consistent with changes in the fidelity of RNA synthesis. We conclude that an extended primer grip of the polymerase, including L420, M392, K375, and R376, contributes to the fidelity of RNA synthesis and to efficient sexual RNA replication mechanisms.IMPORTANCE Picornaviruses have both asexual and sexual RNA replication mechanisms. Sexual RNA replication shapes picornavirus species groups, contributes to the emergence of vaccine-derived polioviruses, and counteracts error catastrophe. Can viruses distinguish between homologous and nonhomologous partners during sexual RNA replication? We implicate an extended primer grip of the viral polymerase in sexual RNA replication mechanisms. By sensing RNA sequence complementarity near the active site, the extended primer grip of the polymerase has the potential to distinguish between homologous and nonhomologous RNA templates during sexual RNA replication.


Subject(s)
Picornaviridae/genetics , RNA-Dependent RNA Polymerase/genetics , Virus Replication/drug effects , Amino Acid Substitution/genetics , Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Viral/drug effects , HeLa Cells , Humans , Mutation/drug effects , Picornaviridae/metabolism , Picornaviridae/pathogenicity , Picornaviridae Infections/genetics , Picornaviridae Infections/metabolism , Poliovirus/genetics , RNA/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribavirin/pharmacology , Virus Replication/genetics
2.
J Biol Chem ; 295(31): 10624-10637, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32493771

ABSTRACT

Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.


Subject(s)
Enterovirus B, Human , Poliovirus , RNA, Viral , RNA-Dependent RNA Polymerase , Viral Proteins , Enterovirus B, Human/enzymology , Enterovirus B, Human/genetics , HeLa Cells , Humans , Poliovirus/enzymology , Poliovirus/genetics , Protein Domains , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
3.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31068422

ABSTRACT

Template-dependent RNA replication mechanisms render picornaviruses susceptible to error catastrophe, an overwhelming accumulation of mutations incompatible with viability. Viral RNA recombination, in theory, provides a mechanism for viruses to counteract error catastrophe. We tested this theory by exploiting well-defined mutations in the poliovirus RNA-dependent RNA polymerase (RDRP), namely, a G64S mutation and an L420A mutation. Our data reveal two distinct mechanisms by which picornaviral RDRPs influence error catastrophe: fidelity of RNA synthesis and RNA recombination. A G64S mutation increased the fidelity of the viral polymerase and rendered the virus resistant to ribavirin-induced error catastrophe, but only when RNA recombination was at wild-type levels. An L420A mutation in the viral polymerase inhibited RNA recombination and exacerbated ribavirin-induced error catastrophe. Furthermore, when RNA recombination was substantially reduced by an L420A mutation, a high-fidelity G64S polymerase failed to make the virus resistant to ribavirin. These data indicate that viral RNA recombination is required for poliovirus to evade ribavirin-induced error catastrophe. The conserved nature of L420 within RDRPs suggests that RNA recombination is a common mechanism for picornaviruses to counteract and avoid error catastrophe.IMPORTANCE Positive-strand RNA viruses produce vast amounts of progeny in very short periods of time via template-dependent RNA replication mechanisms. Template-dependent RNA replication, while efficient, can be disadvantageous due to error-prone viral polymerases. The accumulation of mutations in viral RNA genomes leads to error catastrophe. In this study, we substantiate long-held theories regarding the advantages and disadvantages of asexual and sexual replication strategies among RNA viruses. In particular, we show that picornavirus RNA recombination counteracts the negative consequences of asexual template-dependent RNA replication mechanisms, namely, error catastrophe.


Subject(s)
Poliovirus , RNA, Viral , RNA-Dependent RNA Polymerase , Recombination, Genetic/drug effects , Ribavirin/pharmacology , Viral Proteins , Amino Acid Substitution , Animals , HeLa Cells , Humans , Mice , Mutation, Missense , Poliovirus/genetics , Poliovirus/metabolism , RNA/genetics , RNA/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
4.
J Virol ; 90(19): 8410-21, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27412593

ABSTRACT

UNLABELLED: RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE: Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase mutation that disables recombination renders the virus more susceptible to the antiviral drug ribavirin, suggesting that recombination contributes to ribavirin resistance. Elucidating the molecular mechanisms of RNA replication and recombination may help mankind achieve and maintain poliovirus eradication.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Leucine/metabolism , Poliovirus/drug effects , RNA-Dependent RNA Polymerase/metabolism , Recombination, Genetic , Ribavirin/pharmacology , Amino Acid Substitution , DNA Mutational Analysis , HeLa Cells , Humans , Leucine/genetics , Microbial Sensitivity Tests , Mutagenesis, Site-Directed , Poliovirus/enzymology , RNA-Dependent RNA Polymerase/genetics
5.
Virus Res ; 206: 3-11, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-25559071

ABSTRACT

Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3D(pol). Poliovirus 3D(pol) uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3D(pol) residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3D(pol) and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3D(pol) and TERT assume a "right-hand" conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3D(pol) and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3' ends of their respective genomes via evolutionarily related mechanisms.


Subject(s)
Picornaviridae/enzymology , Polyadenylation , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Models, Molecular , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry , Transcription, Genetic
6.
J Virol ; 87(10): 5629-44, 2013 May.
Article in English | MEDLINE | ID: mdl-23468507

ABSTRACT

Picornaviruses have 3' polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3D(pol)) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3D(pol) influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3D(pol) that resulted in shorter or longer 3' poly(A) tails in virion RNA. These mutations could disrupt structural features of 3D(pol) required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3D(pol) in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3D(pol) and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3D(pol) involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands.


Subject(s)
Poliovirus/enzymology , Polyadenylation , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Substitution , DNA Mutational Analysis , HeLa Cells , Humans , Models, Molecular , Mutagenesis, Site-Directed , Poliovirus/genetics , Protein Conformation , RNA-Dependent RNA Polymerase/genetics
7.
J Mol Biol ; 417(4): 263-78, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22321798

ABSTRACT

Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.


Subject(s)
Poliovirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Base Sequence , Enterovirus/enzymology , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/genetics , Rhinovirus/enzymology
8.
Proc Natl Acad Sci U S A ; 109(3): 941-6, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22215596

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that regulate eukaryotic gene expression by binding to regions of imperfect complementarity in mRNAs, typically in the 3' UTR, recruiting an Argonaute (Ago) protein complex that usually results in translational repression or destabilization of the target RNA. The translation and decay of mRNAs are closely linked, competing processes, and whether the miRNA-induced silencing complex (RISC) acts primarily to reduce translation or stability of the mRNA remains controversial. miR-122 is an abundant, liver-specific miRNA that is an unusual host factor for hepatitis C virus (HCV), an important cause of liver disease in humans. Prior studies show that it binds the 5' UTR of the messenger-sense HCV RNA genome, stimulating translation and promoting genome replication by an unknown mechanism. Here we show that miR-122 binds HCV RNA in association with Ago2 and that this slows decay of the viral genome in infected cells. The stabilizing action of miR-122 does not require the viral RNA to be translationally active nor engaged in replication, and can be functionally substituted by a nonmethylated 5' cap. Our data demonstrate that a RISC-like complex mediates the stability of HCV RNA and suggest that Ago2 and miR-122 act coordinately to protect the viral genome from 5' exonuclease activity of the host mRNA decay machinery. miR-122 thus acts in an unconventional fashion to stabilize HCV RNA and slow its decay, expanding the repertoire of mechanisms by which miRNAs modulate gene expression.


Subject(s)
Argonaute Proteins/metabolism , Hepacivirus/genetics , MicroRNAs/metabolism , RNA Stability , RNA, Viral/metabolism , 5' Untranslated Regions/genetics , Base Sequence , Genome, Viral/genetics , HeLa Cells , Humans , Methylation , MicroRNAs/genetics , Molecular Sequence Data , Protein Binding , RNA Caps/metabolism
9.
J Virol ; 84(16): 8072-84, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20534858

ABSTRACT

The structures of polio-, coxsackie-, and rhinovirus polymerases have revealed a conserved yet unusual protein conformation surrounding their buried N termini where a beta-strand distortion results in a solvent-exposed hydrophobic amino acid at residue 5. In a previous study, we found that coxsackievirus polymerase activity increased or decreased depending on the size of the amino acid at residue 5 and proposed that this residue becomes buried during the catalytic cycle. In this work, we extend our studies to show that poliovirus polymerase activity is also dependent on the nature of residue 5 and further elucidate which aspects of polymerase function are affected. Poliovirus polymerases with mutations of tryptophan 5 retain wild-type elongation rates, RNA binding affinities, and elongation complex formation rates but form unstable elongation complexes. A large hydrophobic residue is required to maintain the polymerase in an elongation-competent conformation, and smaller hydrophobic residues at position 5 progressively decrease the stability of elongation complexes and their processivity on genome-length templates. Consistent with this, the mutations also reduced viral RNA production in a cell-free replication system. In vivo, viruses containing residue 5 mutants produce viable virus, and an aromatic phenylalanine was maintained with only a slightly decreased virus growth rate. However, nonaromatic amino acids resulted in slow-growing viruses that reverted to wild type. The structural basis for this polymerase phenotype is yet to be determined, and we speculate that amino acid residue 5 interacts directly with template RNA or is involved in a protein structural interaction that stabilizes the elongation complex.


Subject(s)
Poliovirus/physiology , RNA-Dependent RNA Polymerase/metabolism , Transcription, Genetic , Virus Replication , Amino Acid Substitution/genetics , Humans , Models, Molecular , Mutagenesis, Site-Directed , Mutation, Missense , Protein Structure, Tertiary , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/genetics
10.
J Virol ; 84(6): 2843-58, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20071574

ABSTRACT

A 3' poly(A) tail is a common feature of picornavirus RNA genomes and the RNA genomes of many other positive-strand RNA viruses. We examined the manner in which the homopolymeric poly(A) and poly(U) portions of poliovirus (PV) positive- and negative-strand RNAs were used as reciprocal templates during RNA replication. Poly(A) sequences at the 3' end of viral positive-strand RNA were transcribed into VPg-linked poly(U) products at the 5' end of negative-strand RNA during PV RNA replication. Subsequently, VPg-linked poly(U) sequences at the 5' ends of negative-strand RNA templates were transcribed into poly(A) sequences at the 3' ends of positive-strand RNAs. The homopolymeric poly(A) and poly(U) portions of PV RNA products of replication were heterogeneous in length and frequently longer than the corresponding homopolymeric sequences of the respective viral RNA templates. The data support a model of PV RNA replication wherein reiterative transcription of homopolymeric templates ensures the synthesis of long 3' poly(A) tails on progeny RNA genomes.


Subject(s)
Poliovirus/genetics , Poly A/genetics , Poly U/genetics , RNA, Viral , Templates, Genetic , Viral Proteins/genetics , Virus Replication/genetics , Base Sequence , Exoribonucleases/metabolism , Genome, Viral , HeLa Cells , Humans , Molecular Sequence Data , Poliovirus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/metabolism
11.
J Virol ; 82(12): 5847-59, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18400852

ABSTRACT

Poliovirus (PV) 2A protease (2A(Pro)) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5' cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2A(Pro) activity was required for viral polysome formation and stability. 2A(Pro) cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2A(Cys109Ser) (2A(Pro) with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2A(Cys109Ser)-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3C(Pro) activity was not required for viral polysome formation or stability. 2A(Pro)-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5' terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.


Subject(s)
Cysteine Endopeptidases/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Poliovirus/enzymology , Polyribosomes/metabolism , RNA Stability , RNA, Messenger/biosynthesis , Viral Proteins/metabolism , Cell-Free System , Cysteine Endopeptidases/genetics , HeLa Cells , Humans , Mutation , Poliovirus/genetics , Poliovirus/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , RNA, Viral/genetics , RNA, Viral/metabolism , Sulfur Radioisotopes/metabolism , Viral Proteins/genetics
12.
J Virol ; 82(12): 5835-46, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18400854

ABSTRACT

Poliovirus (PV) mRNA is unusual because it possesses a 5'-terminal monophosphate rather than a 5'-terminal cap. Uncapped mRNAs are typically degraded by the 5' exonuclease XRN1. A 5'-terminal cloverleaf RNA structure interacts with poly(rC) binding proteins (PCBPs) to protect uncapped PV mRNA from 5' exonuclease (K. E. Murray, A. W. Roberts, and D. J. Barton, RNA 7:1126-1141, 2001). In this study, we examined de novo polysome formation using HeLa cell-free translation-replication reactions. PV mRNA formed polysomes coordinate with the time needed for ribosomes to traverse the viral open reading frame (ORF). Nascent PV polypeptides cofractionated with viral polysomes, while mature PV proteins were released from the polysomes. Alterations in the size of the PV ORF correlated with alterations in the size of polysomes with ribosomes present every 250 to 500 nucleotides of the ORF. Eukaryotic initiation factor 4GI (eIF4GI) was cleaved rapidly as viral polysomes assembled and the COOH-terminal portion of eIF4GI cofractionated with viral polysomes. Poly(A) binding protein, along with PCBP 1 and 2, also cofractionated with viral polysomes. A C24A mutation that inhibits PCBP-5'-terminal cloverleaf RNA interactions inhibited the formation and stability of nascent PV polysomes. Kinetic analyses indicated that the PCBP-5' cloverleaf RNA interaction was necessary to protect PV mRNA from 5' exonuclease immediately as ribosomes initially traversed the viral ORF, before viral proteins could alter translation factors within nascent polysomes or contribute to ribonucleoprotein complexes at the termini of the viral mRNA.


Subject(s)
Poliovirus/metabolism , Poly C/metabolism , Polyribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Viral/chemistry , Binding Sites , Binding, Competitive , Cell-Free System , DNA, Complementary/metabolism , HeLa Cells , Humans , Kinetics , Nucleic Acid Conformation , Plasmids/metabolism , Poliovirus/genetics , Poly C/genetics , Polyribosomes/genetics , Protein Binding , Protein Biosynthesis , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism
13.
Am J Trop Med Hyg ; 74(2): 224-32, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16474075

ABSTRACT

La Crosse (LAC) virus (family Bunyaviridae, genus Orthobunyavirus) small (S) segment negative-sense RNA genome (vRNA), positive-sense full-length RNA complement (vcRNA), and subgenomic mRNA were assayed in infected cell cultures and female Aedes (Ochlerotatus) triseriatus mosquito tissues using quantitative PCR (Q-PCR). During persistent infection of C6/36 (Aedes albopictus) and MAT (Aedes triseriatus) cultured cells and cytolytic infection of BHK-21 cultured cells, LAC vRNA was the most abundant RNA species, followed by mRNA and vcRNA. RNA copy numbers per cell were quantified and vRNA correlated to virus titer in cell culture medium. The Q-PCR assay proved more sensitive than reverse transcription (RT)-PCR and immunofluorescence assays (IFA) for detecting LAC virus infection of mosquitoes. After infection of female mosquitoes orally, quantities of LAC RNA increased in ovaries for 6 days, and as ovarian biosynthetic activity quiesced, LAC RNA quantities decreased then remained detectable at a low level. After a second, noninfectious blood meal, quantities of LAC RNA in ovaries increased significantly, quantitatively confirming correlation of LAC virus RNA synthesis with vector metabolic activity. Coregulation of viral replication and mosquito ovary metabolic activity may condition efficient transovarial transmission.


Subject(s)
Encephalitis, California/virology , La Crosse virus/genetics , RNA, Viral/biosynthesis , Aedes/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cricetinae , DNA Primers , Fluorescent Antibody Technique, Direct , Gene Expression Regulation, Viral , Humans , La Crosse virus/immunology , La Crosse virus/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Vero Cells , Virus Replication
14.
Microbes Infect ; 4(3): 341-50, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909745

ABSTRACT

La Crosse virus is maintained in a cycle involving mosquitoes and small mammals. Vertebrate cell infection is generally cytolytic; vector cell infection results in persistent infection. Features of La Crosse virus replication that may permit the virus to traffic between vector and vertebrate hosts and condition different infection outcomes are described.


Subject(s)
Culicidae/virology , La Crosse virus/growth & development , La Crosse virus/genetics , Mammals/virology , Aedes/growth & development , Aedes/virology , Amino Acid Sequence , Animals , Disease Transmission, Infectious , Encephalitis, California/transmission , Host-Parasite Interactions , Humans , Infectious Disease Transmission, Vertical , Mice , Models, Genetic , Virus Replication
15.
J Gen Virol ; 82(Pt 12): 2919-2926, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11714967

ABSTRACT

The genetic consequences of passing three different strains of La Crosse (LAC) virus orally and transovarially in Aedes triseriatus mosquitoes were examined. Two of the LAC strains (WT LAC and LAC ORI) had been passaged numerous times in cell culture; the third strain (SM1-78) had been passaged only once in suckling mice. Genetic changes were monitored in three regions of the LAC genome after oral infection and dissemination in the mosquito, and transovarial transmission (TOT) of the virus to progeny. Sequence analyses were used to characterize the genetic changes occurring in regions of G1, G2 and N open reading frames (ORFs) during passage. Only one mutation was detected in the G1 ORF of SM1-78 virus after mosquito passage; however, numerous nucleotide and amino acid substitutions were detected in the G1 ORF of WT LAC and LAC ORI (cell culture-adapted viruses). In contrast to G1, the N and G2 ORF sequences examined were stable. Mutations introduced into viral genomes during replication in parental mosquitoes were expressed in progeny mosquitoes following TOT. Genetic diversity of virus populations from a single mosquito was examined by single-strand conformation polymorphisms analysis of the variable region of glycoprotein G1. LAC virus RNA genotype diversity was greatest in virus that infected and replicated in the midgut, and declined as virus disseminated from the midgut and infected ovaries and salivary glands.


Subject(s)
Culicidae/virology , La Crosse virus/genetics , Amino Acid Substitution , Animals , Cloning, Molecular , Female , Genotype , Intestines/virology , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Ovary/virology , Viral Proteins/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...