Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 280(5): 634-653, 2019 05.
Article in English | MEDLINE | ID: mdl-30790333

ABSTRACT

Recent phylogenetic revisions of euthyneuran gastropods ("opisthobranchs" and "pulmonates") suggest that clades with a planktotrophic larva, the ancestral life history for euthyneurans, are more widely distributed along the trunk of the euthyneuran tree than previously realized. There is some indication that the planktotrophic larva of euthyneurans has distinctive features, but information to date has come mainly from traditional "opisthobranch" groups. Much less is known about planktotrophic "pulmonate" larvae. If planktotrophic larvae of "pulmonates" share unique traits with those of "opisthobranchs," then a distinctive euthyneuran larval-type has been the developmental starting template for a spectacular amount of evolved morphological and ecological disparity among adult euthyneurans. We studied development of a siphonariid by preparing sections of larval and postmetamorphic stages for histological and ultrastructural analysis, together with 3D reconstructions and data from immunolabeling of the larval apical sensory organ. We also sought a developmental explanation for the unusual arrangement of shell-attached, dorso-ventral muscles relative to the mantle cavity of adult siphonariids. Adult siphonariids ("false limpets") have a patelliform shell but their C-shaped shell muscle partially embraces a central mantle cavity, which is different from the arrangement of these components in patellogastropods ("true limpets"). It is not obvious how shell muscles extending into the foot become placed anterior to the mantle cavity during siphonariid development from a veliger larva. We found that planktotrophic larvae of Siphonaria denticulata are extremely similar to previously described, planktotrophic "opisthobranch" larvae. To emphasize this point, we update a list of distinctive characteristics of planktotrophic euthyneuran larvae, which can anchor future studies on the impressive evolvability of this larval-type. We also describe how premetamorphic and postmetamorphic morphogenesis of larval mantle fold tissue creates the unusual arrangement of shell-muscles and mantle cavity in siphonariids. This result adds to the known postmetamorphic evolutionary innovations involving mantle fold tissue among euthyneurans.


Subject(s)
Animal Shells/anatomy & histology , Gastropoda/anatomy & histology , Gastropoda/growth & development , Animal Shells/ultrastructure , Animals , Epithelium/anatomy & histology , Epithelium/ultrastructure , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/ultrastructure , Gastropoda/classification , Gastropoda/ultrastructure , Larva/anatomy & histology , Larva/growth & development , Morphogenesis , Osmoregulation , Phylogeny , Sense Organs/anatomy & histology , Sense Organs/ultrastructure
2.
J Phycol ; 50(5): 850-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26988640

ABSTRACT

Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont-derived) within cnidarian hosts in a specific host-symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host-symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S-rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host-symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.

3.
Microsc Res Tech ; 71(12): 863-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18767054

ABSTRACT

The following investigation examines changes in the distance between the right and left dendritic termini arising from the serotonergic sensory neurons found in the apical ganglion of the larval dendronotid nudibranchs, Melibe leonina and Tritonia diomedea. A significant increase in separation, that is different in extent, occurs in both species as they grow from hatching to metamorphic competence. Competent M. leonina larvae exhibit a separation that is about 4.5 times that at hatching, whereas competent larvae of T. diomedea show an increase that is only 1.6 times that at hatching. The increase in separation of the lateral, serotonergic, dendritic termini (particularly in M. leonina) may allow the larva to more effectively assess left versus right differences in an as yet unknown sensory stimulus. The serotonergic innervation that arises from the apical ganglion is known to be associated with the muscles and large ciliated cells of the velum. Better right versus left discrimination of sensory stimuli experienced during the pelagic or settling larval phases may allow the larva to more precisely control swimming activities such that the likelihood of successful feeding or settlement behavior is increased.


Subject(s)
Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/growth & development , Gastropoda/cytology , Gastropoda/growth & development , Animals , Larva/cytology , Larva/growth & development , Microscopy, Confocal , Microscopy, Fluorescence
4.
J Food Prot ; 68(9): 1860-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16161685

ABSTRACT

An immunoassay system was developed for efficient detection of prohibited meat and bone meal (MBM) in animal feed. Monoclonal antibodies (MAbs) were raised against bovine smooth muscle autoclaved at 130 degrees C for 20 min. Among the 1,500 supernatants of hybridoma cells screened, MAbs 3E1, 1G3, and 3E10 were selected and characterized in this study. The first set of MAbs produced, 3E1 and 1G3, had stronger reactivity against MBM than against smooth muscle that was heat treated at 90 degrees C for 10 min. However, reactivity gradually increased against smooth muscle that was autoclaved at 130 degrees C for up to 1 h. The enzyme-linked immunosorbent assay for detection of MBM in animal feed was optimized with the MAb 3E10 because of its superior performance. MAb 3E10 diluted to 100-fold was used to differentiate bovine MBM from that of other species in ingredients used for commercial animal feeds and could detect down to 0.05% MBM mixed in animal feed.


Subject(s)
Animal Feed/analysis , Antibodies, Monoclonal/biosynthesis , Food Contamination/analysis , Muscle, Smooth/immunology , Animals , Antibody Specificity , Antigens/immunology , Biological Products , Cattle , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Hybridomas/immunology , Minerals , Sensitivity and Specificity
5.
Biol Bull ; 208(3): 169-82, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15965122

ABSTRACT

This investigation examines tubulin labeling associated with the apical ganglion in a variety of planktotrophic and lecithotrophic opisthobranch larvae. Emphasis is on the ampullary neurons, in which ciliary bundles within the ampulla are strongly labeled. The larvae of all but one species have five ampullary neurons and their associated ciliary bundles. The anaspid Phyllaplysia taylori, a species with direct development and an encapsulated veliger stage, has only four ampullary neurons. The cilia-containing ampulla extends to the pretrochal surface via a long, narrow canal that opens to the external environment through a very small pore (0.1 microm diameter). Cilia within the canal were never observed to project beyond the opening of the apical pore. The ampullary canals extend toward and are grouped with the ciliary tuft cells and remain in this location as planktotrophic larvae feed and grow. If, as has been reported, the ciliary tuft is motile, the pores may be continually bathed in fresh seawater. Such an arrangement would increase sensitivity to environmental chemical stimuli if the suggested chemosensory function of these neurons is correct. In general, ciliary bundles of newly hatched veligers are smaller in planktotrophic larvae than in lecithotrophic larvae. In planktotrophic larvae of Melibe leonina, the ciliary bundles increase in length and width as the veligers feed and grow. This may be related to an increase in sensitivity for whatever sensory function these neurons fulfill. An unexpected tubulin-labeled structure, tentatively called the apical nerve, was also found to be associated with the apical ganglion. This putative nerve extends from the region of the visceral organs to a position either within or adjacent to the apical ganglion. One function of the apical nerve might be to convey the stimulus resulting from metamorphic induction to the visceral organs.


Subject(s)
Ganglia, Invertebrate/anatomy & histology , Mollusca/anatomy & histology , Animals , Ganglia, Invertebrate/chemistry , Ganglia, Invertebrate/ultrastructure , Larva/anatomy & histology , Larva/chemistry , Larva/ultrastructure , Mollusca/chemistry , Mollusca/ultrastructure , Tubulin/analysis
6.
J Agric Food Chem ; 52(25): 7580-5, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15675807

ABSTRACT

For the detection of prohibited meat and bone meal (MBM) in animal feed, monoclonal antibodies (MAbs) were raised against heat-stable h-caldesmon purified from bovine intestinal smooth muscle. The obtained hybridoma cells were screened against extracts of the bovine MBM and heat-treated smooth muscle, and MAb 5E12 was identified as having the best performance. Antibody 5E12 did not react with animal feed, milk product, plant proteins, and other ingredients used for commercial animal feed except for the gelatin. This antibody diluted to 100-fold was able to detect MBM mixed in animal feed at 0.05% in an ELISA, and it showed strong affinity toward bovine smooth muscle autoclaved at 130 degrees C. Therefore, this antibody can be used in the ELISA system for field testing of the presence of MBM in animal feed.


Subject(s)
Animal Feed/analysis , Antibodies, Monoclonal/biosynthesis , Food Contamination/analysis , Meat/analysis , Minerals/analysis , Animals , Antibody Specificity , Antigens/immunology , Biological Products , Cattle , Enzyme-Linked Immunosorbent Assay , Hot Temperature , Hybridomas/immunology , Intestines/immunology , Mice , Muscle, Smooth/immunology
7.
Biol Bull ; 204(3): 278-89, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12807705

ABSTRACT

The relationship between density and location of zooxanthellae and levels of carbonic anhydrase (CA) activity was examined in Cassiopea xamachana. In freshly collected symbiotic animals, high densities of zooxanthellae corresponded with high levels of CA activity in host bell and oral arm tissues. Bleaching resulted in a significant loss of zooxanthellae and CA activity. Recolonization resulted in full restoration of zooxanthellar densities but only partial restoration of CA activity. High levels of CA activity were also seen in structures with inherently higher zooxanthellar densities, such as oral arm tissues. Similarly, the oral epidermal layer of bell tissue had significantly higher zooxanthellar densities and levels of CA activity than did aboral bell tissues. Fluorescent labeling, using 5-dimethylaminonapthalene-1-sulfonamide (DNSA) also reflected this tight-knit relationship between the presence and density of zooxanthellae, as DNSA-CA fluorescence intensity was greatest in host oral epithelial cells directly overlying zooxanthellae. However, the presence and density of zooxanthellae did not always correspond with enzyme activity levels. A transect of bell tissue from the margin to the manubrium revealed a gradient of CA activity, with the highest values at the bell margin and the lowest at the manubrium, despite an even distribution of zooxanthellae. Thus, abiotic factors may also influence the distribution of CA and the levels of CA activity.


Subject(s)
Carbonic Anhydrases/metabolism , Dinoflagellida/physiology , Scyphozoa/enzymology , Symbiosis/physiology , Animals , Dinoflagellida/isolation & purification , Florida , Microscopy, Fluorescence , Scyphozoa/anatomy & histology , Scyphozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...