Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 8(5): 1571-89, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27189985

ABSTRACT

Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.


Subject(s)
Evolution, Molecular , Horseshoe Crabs/genetics , Opsins/genetics , Phylogeny , Amino Acid Sequence , Animals , Eye/metabolism , Genome , Multigene Family/genetics , Opsins/classification
2.
J Exp Biol ; 218(Pt 3): 466-79, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25524988

ABSTRACT

The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.


Subject(s)
Compound Eye, Arthropod/metabolism , Horseshoe Crabs/metabolism , Light , Opsins/metabolism , Photoreceptor Cells, Invertebrate/metabolism , Animals , Cell Membrane/metabolism , Horseshoe Crabs/radiation effects , Phylogeny
3.
J Exp Biol ; 217(Pt 17): 3133-45, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24948643

ABSTRACT

The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.


Subject(s)
Horseshoe Crabs/chemistry , Horseshoe Crabs/radiation effects , Opsins/chemistry , Photoreceptor Cells, Invertebrate/chemistry , Photoreceptor Cells, Invertebrate/physiology , Ultraviolet Rays , Amino Acid Sequence , Animals , Compound Eye, Arthropod/chemistry , Compound Eye, Arthropod/physiology , Eye/metabolism , Gene Expression Regulation/radiation effects , Light , Opsins/metabolism , Vision, Ocular/physiology
4.
J Exp Biol ; 216(Pt 10): 1837-49, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23393287

ABSTRACT

Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.


Subject(s)
Arrestin/metabolism , Circadian Rhythm/radiation effects , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Horseshoe Crabs/metabolism , Horseshoe Crabs/radiation effects , Light , Opsins/metabolism , Actins/metabolism , Animals , Circadian Clocks , Colforsin/pharmacology , Compound Eye, Arthropod/cytology , Compound Eye, Arthropod/drug effects , Compound Eye, Arthropod/metabolism , Compound Eye, Arthropod/radiation effects , Cyclic AMP/metabolism , Dark Adaptation/drug effects , Dark Adaptation/radiation effects , Darkness , Octopamine/pharmacology , Retina/cytology , Retina/drug effects , Retina/metabolism , Retina/radiation effects , Rhodopsin/metabolism
5.
J Neurochem ; 119(4): 772-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21895655

ABSTRACT

As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.


Subject(s)
Myosin Type III/chemistry , Myosin Type III/metabolism , Protein Kinases/metabolism , Amino Acid Sequence , Amino Acids , Animals , Humans , Mass Spectrometry , Mice , Myosin Type III/classification , Myosin Type III/genetics , Peptides/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Substrate Specificity
6.
Biochemistry ; 46(48): 13907-19, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-17990896

ABSTRACT

Class III unconventional myosins are critical for the normal function of auditory hair cells and the function and maintenance of photoreceptors; however, the roles of class III myosins in these sensory cells are unknown. Class III myosins are unique in that they have a kinase domain at their N-terminus; thus, they may have both signaling and motor functions. In the horseshoe crab Limulus polyphemus, enhanced phosphorylation of an abundant, photoreceptor specific class III myosin at night correlates with well-characterized circadian changes in photoreceptor structure and function. Thus, the Limulus visual system may be particularly useful for investigating the properties, modulation, and functions of a class III myosin. Previously, we showed that two sites within the actin interface of full-length Limulus myosin III expressed in baculovirus are substrates for both cyclic AMP-dependent protein kinase and autophosphorylation. In the current study, mass spectrometry was used to show that these same sites are phosphorylated in the endogenous protein extracted from Limulus lateral eye, and that enhanced phosphorylation at these sites occurs in vivo in response to natural circadian clock input to these eyes. These findings demonstrate in vivo changes in myosin III phosphorylation in response to a natural stimulus. This phosphorylation may modulate myosin III-actin interactions.


Subject(s)
Actins/metabolism , Biological Clocks , Circadian Rhythm , Myosin Type III/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Binding Sites , Chromatography, Liquid , Horseshoe Crabs , Molecular Sequence Data , Phosphorylation , Tandem Mass Spectrometry
7.
Dev Dyn ; 235(10): 2641-55, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16788994

ABSTRACT

Despite ongoing interest into the architecture, biochemistry, and physiology of the visual systems of the xiphosuran Limulus polyphemus, their ontogenetic aspects have received little attention. Thus, we explored the development of the lateral eyes and associated neuropils in late embryos and larvae of these animals. The first external evidence of the lateral eyes was the appearance of white pigment spots-guanophores associated with the rudimentary photoreceptors-on the dorsolateral side of the late embryos, suggesting that these embryos can perceive light. The first brown pigment emerges in the eyes during the last (third) embryonic molt to the trilobite stage. However, ommatidia develop from this field of pigment toward the end of the larval trilobite stage so that the young larvae at hatching do not have object recognition. Double staining with the proliferation marker bromodeoxyuridine (BrdU) and an antibody against L. polyphemus myosin III, which is concentrated in photoreceptors of this species, confirmed previous reports that, in the trilobite larvae, new cellular material is added to the eye field from an anteriorly located proliferation zone. Pulse-chase experiments indicated that these new cells differentiate into new ommatidia. Examining larval eyes labeled for opsin showed that the new ommatidia become organized into irregular rows that give the eye field a triangular appearance. Within the eye field, the ommatidia are arranged in an imperfect hexagonal array. Myosin III immunoreactivity in trilobite larvae also revealed the architecture of the central visual pathways associated with the median eye complex and the lateral eyes. Double labeling with myosin III and BrdU showed that neurogenesis persists in the larval brain and suggested that new neurons of both the lamina and the medulla originate from a single common proliferation zone. These data are compared with eye development in Drosophila melanogaster and are discussed with regard to new ideas on eye evolution in the Euarthropoda.


Subject(s)
Arthropods/embryology , Biological Evolution , Eye/embryology , Horseshoe Crabs/embryology , Animals , Arrestin/analysis , Arthropods/anatomy & histology , Arthropods/metabolism , Eye/anatomy & histology , Eye/metabolism , Female , Horseshoe Crabs/anatomy & histology , Horseshoe Crabs/metabolism , Immunohistochemistry/methods , Male , Microscopy, Confocal , Microscopy, Fluorescence , Myosin Type III/analysis , Neurons/cytology , Neurons/metabolism , Neuropil/cytology , Neuropil/metabolism , Optic Nerve/cytology , Optic Nerve/embryology , Optic Nerve/metabolism , Photoreceptor Cells/anatomy & histology , Photoreceptor Cells/embryology , Photoreceptor Cells/metabolism , Visual Pathways/anatomy & histology , Visual Pathways/embryology , Visual Pathways/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...