Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 40(6): 1085-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22381335

ABSTRACT

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs). Greater than 50% inhibition of active uptake by Rif SV was found to be associated with clinically significant OATP-mediated DDIs. We propose that the in vitro active uptake value therefore could serve as a cutoff for class 3 and 4 compounds of the Biopharmaceutics Drug Disposition Classification System, which could be integrated into the International Transporter Consortium decision tree recommendations to trigger clinical evaluations for potential DDI risks. Furthermore, the kinetics of in vitro hepatobiliary transport obtained from SCHHs, along with protein expression scaling factors, offer an opportunity to predict complex in vivo processes using mathematical models, such as physiologically based pharmacokinetics models.


Subject(s)
Drug Interactions/physiology , Hepatocytes/metabolism , Pharmaceutical Preparations/metabolism , Cells, Cultured , Drug Evaluation, Preclinical/methods , Humans , Organic Anion Transporters/metabolism , Retrospective Studies
2.
Drug Metab Dispos ; 40(5): 1007-17, 2012 May.
Article in English | MEDLINE | ID: mdl-22344703

ABSTRACT

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed.


Subject(s)
Drug Discovery/methods , Hepatocytes/metabolism , Models, Biological , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Cell Culture Techniques , Cells, Cultured , Chemistry, Physical , Chromatography, High Pressure Liquid , Computer Simulation , Cryopreservation , Hepatocytes/cytology , Humans , Injections, Intravenous , Organ Specificity , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Predictive Value of Tests , Substrate Specificity , Tissue Distribution
3.
Xenobiotica ; 42(1): 11-27, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21970687

ABSTRACT

Optimising drug properties can be an important strategy to limit penetration into the CNS and offers advantages in reducing the risk of undesirable neurological effects When considering the design of these drugs it is important to consider the relative influx and efflux rates at the relevant biological membranes The highest degree of restriction at the brain is probably achievable by utilising active transport to exclude compounds from the brain Affinity for the efflux transporters Pgp and BCRP has been achieved in two in-house chemistry programmes by increasing polar surface area, which resulted in highly orally bioavailable low CNS penetrant compounds in preclinical species.


Subject(s)
Central Nervous System/drug effects , Drug Compounding/methods , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmaceutical Preparations/metabolism , Blood-Brain Barrier/metabolism , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Structure-Activity Relationship
4.
Xenobiotica ; 42(1): 57-74, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21992032

ABSTRACT

PF-184298 ((S)-2,3-dichloro-N-isobutyl-N-pyrrolidin-3-ylbenzamide) and PF-4776548 ((3-(4-fluoro-2-methoxy-benzyl)-7-hydroxy-8,9-dihydro-3H,7H-pyrrolo[2,3-c][1,7]naphthyridin-6-one)) are novel compounds which were selected to progress to human studies. Discordant human pharmacokinetic predictions arose from pre-clinical in vivo studies in rat and dog, and from human in vitro studies, resulting in a clearance prediction range of 3 to >20 mL min⁻¹ kg⁻¹ for PF-184298, and 5 to >20 mL min⁻¹ kg⁻¹ for PF-4776548. A package of work to investigate the discordance for PF-184298 is described. Although ultimately complementary to the human pharmacokinetic data in characterising the disposition of PF-184298 in humans, these data did not provide any further confidence in pharmacokinetic prediction. A fit for purpose human pharmacokinetic study was conducted for each compound, with an oral pharmacologically active dose for PF-184298, and an intravenous and oral microdose for PF-4776548. This provided a relatively low cost, clear decision making approach, resulting in the termination of PF-4776548 and further progression of PF-184298. A retrospective analysis of the data showed that, if the tools had been available at the time, the pharmacokinetics of PF-184298 in human could have been predicted from a population based simulation tool in combination with physicochemical properties and in vitro human intrinsic clearance.


Subject(s)
Anilides/pharmacokinetics , Drug Evaluation, Preclinical/methods , Models, Biological , Naphthyridines/pharmacokinetics , Pyrrolidines/pharmacokinetics , Adult , Anilides/administration & dosage , Animal Testing Alternatives , Animals , Dogs , Drug Discovery , Humans , Male , Microsomes, Liver/metabolism , Naphthyridines/administration & dosage , Pharmacokinetics , Pyrrolidines/administration & dosage , Rats , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Statistics as Topic , Young Adult
5.
Xenobiotica ; 42(1): 28-45, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22077101

ABSTRACT

Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs). The impact of transporter mediated hepatic clearance is illustrated with case examples, from the literature and also from the Pfizer portfolio. The currently available in vitro techniques to study the hepatic transporter proteins involved in the hepatobiliary clearance of drugs are reviewed herein along with recent advances in using these in vitro data to predict the human clearance of compounds recognized by hepatic uptake transporters.


Subject(s)
Biliary Tract/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacokinetics , Angiotensin Receptor Antagonists/pharmacokinetics , Biliary Tract/enzymology , Drug Interactions , Drug and Narcotic Control , Histamine H1 Antagonists/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver/enzymology , Pharmacogenetics , Pharmacokinetics , Species Specificity
6.
J Pharm Sci ; 100(11): 4974-85, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21766308

ABSTRACT

Permeability is an important property of drug candidates. The Madin-Darby canine kidney cell line (MDCK) permeability assay is widely used and the primary concern of using MDCK cells is the presence of endogenous transporters of nonhuman origin. The canine P-glycoprotein (Pgp) can interfere with permeability and transporter studies, leading to less reliable data. A new cell line, MDCKII-LE (low efflux), has been developed by selecting a subpopulation of low-efflux cells from MDCKII-WT using an iterative fluorescence-activated cell sorting technique with calcein-AM as a Pgp and efflux substrate. MDCKII-LE cells are a subpopulation of MDCKII cells with over 200-fold lower canine Pgp mRNA level and fivefold lower protein level than MDCKII-WT. MDCKII-LE cells showed less functional efflux activity than MDCKII-WT based on efflux ratios. Notably, MDCKII-MDR1 showed about 1.5-fold decreased expression of endogenous canine Pgp, suggesting that using the net flux ratio might not completely cancel out the background endogenous transporter activities. MDCKII-LE cells offer clear advantages over the MDCKII-WT by providing less efflux transporter background signals and minimizing interference from canine Pgp. The MDCKII-LE apparent permeability values well differentiates compounds from high to medium/low human intestinal absorption and can be used for Biopharmaceutical Classification System. The MDCKII-LE permeability assay (4-in-1 cassette dosing) is high throughput with good precision, reproducibility, robustness, and cost-effective.


Subject(s)
Permeability , ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Animals , Cell Line , Cell Separation , Chromatography, Liquid , Dogs , Flow Cytometry , Humans , Intestinal Absorption , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry
7.
Br J Clin Pharmacol ; 72(2): 235-46, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21392072

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: This study provides antimuscarinic agents for overactive bladder (OAB) display variable association with side effects mediated by the central nervous system (CNS), which may be of particular concern in the elderly. Adverse effects on CNS functioning are related to muscarinic receptor subtype selectivity and the ability of the agent to cross the blood-brain barrier, where P-gp plays a role in limiting permeability. WHAT THIS STUDY ADDS: This study provides a parallel investigation of CNS penetration of antimuscarinic OAB agents in vivo and assessment of physical properties and permeability in cell monolayers in vitro. It adds further understanding of the roles of passive transcellular permeability and P-gp in determining CNS penetration of antimuscarinic OAB agents. It also enables a comparison of CNS side-effect profiles of OAB agents with preclinical CNS penetration data. AIMS: To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS: Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS: Oxybutynin displayed extensive CNS penetration, with brain:plasma ratios (B:P), unbound brain:unbound plasma ratios (Kp,free) and CSF:free plasma ratios each >1. Tolterodine (B:P = 2.95, Kp,free = 0.23 and CSF:free plasma = 0.16) and solifenacin (B:P = 3.04, Kp,free = 0.28 and CSF:free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B:P (0.03-0.16), Kp,free (0.01-0.04) and CSF:free plasma (0.004-0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10(-6) cm s(-1) ), moderate for 5-HMT (11.7 × 10(-6) cm s(-1) ) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5-38.2 × 10(-6) cm s(-1) ). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS: Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in this study.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Muscarinic Antagonists/pharmacokinetics , Urinary Bladder, Overactive/drug therapy , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Benzhydryl Compounds/pharmacokinetics , Benzofurans/pharmacokinetics , Cell Line , Chromatography, High Pressure Liquid , Cresols/pharmacokinetics , Humans , Male , Mandelic Acids/pharmacokinetics , Phenylpropanolamine/pharmacokinetics , Pyrrolidines/pharmacokinetics , Quinuclidines/pharmacokinetics , Randomized Controlled Trials as Topic , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/metabolism , Solifenacin Succinate , Tandem Mass Spectrometry , Tetrahydroisoquinolines/pharmacokinetics , Tolterodine Tartrate
8.
Drug Metab Dispos ; 38(6): 923-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20304965

ABSTRACT

Imidazoles and triazoles represent major classes of antifungal azole derivatives. With respect to UDP-glucuronosyltransferase (UGT) enzymes, the drug metabolism focus has mainly concentrated on their inhibitory effects with little known about azoles as substrates for UGTs. N-Glucuronide metabolites of the imidazole antifungals, tioconazole and croconazole, have been reported, but there are currently no reports of N-glucuronidation of triazole antifungal agents. In this study, evidence for glucuronidation of azole-containing compounds was studied in human liver microsomes (HLM). When a glucuronide metabolite was identified, azoles were incubated in 12 recombinant UGT (rUGT) enzymes, and enzyme kinetics were determined for the UGT with the most intense glucuronide peak. Six imidazole antifungals, three triazoles, and the benzodiazepine alprazolam (triazole) were evaluated in this study. All compounds investigated were identified as substrates of UGT. UGT1A4 was the main enzyme involved in the metabolism of all compounds except for fluconazole, which was mainly metabolized by UGT2B7, probably mediating its O-glucuronide metabolism. UGT1A3 was also found to be involved in the metabolism of all imidazoles but not triazoles. In both HLM and rUGT K(m) values were lower for imidazoles (14.8-144 microM) than for triazoles (158-3037 microM), with the exception of itraconazole (8.4 microM). All of the imidazoles studied inhibited their own metabolism at high substrate concentrations. In terms of UGT1A4 metabolism, itraconazole showed kinetic features characteristic of imidazole rather than triazole antifungals. This behavior is attributed to the physicochemical properties of itraconazole that are similar to those of imidazoles in terms of clogP.


Subject(s)
Antifungal Agents/pharmacokinetics , Glucuronosyltransferase/metabolism , Imidazoles/pharmacokinetics , Microsomes, Liver/chemistry , Antifungal Agents/metabolism , Dose-Response Relationship, Drug , Glucuronides/metabolism , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/drug effects , Humans , Imidazoles/chemistry , Imidazoles/immunology , Stereoisomerism , Substrate Specificity , Triazoles/chemistry
9.
Drug Metab Dispos ; 38(5): 789-800, 2010 May.
Article in English | MEDLINE | ID: mdl-20124396

ABSTRACT

Lersivirine [UK-453,061, 5-((3,5-diethyl-1-(2-hydroxyethyl)(3,5-14C2)-1H-pyrazol-4-yl)oxy)benzene-1,3-dicarbonitrile] is a next-generation non-nucleoside reverse transcriptase inhibitor, with a unique binding interaction within the reverse transcriptase binding pocket. Lersivirine has shown antiviral activity and is well tolerated in HIV-infected and healthy subjects. This open-label, Phase I study investigated the absorption, metabolism, and excretion of a single oral 500-mg dose of [14C]lersivirine (parent drug) and characterized the plasma, fecal, and urinary radioactivity of lersivirine and its metabolites in four healthy male volunteers. Plasma C(max) for total radioactivity and unchanged lersivirine typically occurred between 0.5 and 3 h postdose. The majority of radioactivity was excreted in urine (approximately 80%) with the remainder excreted in the feces (approximately 20%). The blood/plasma ratio of total drug-derived radioactivity [area under the plasma concentration-time profile from time zero extrapolated to infinite time (AUC(inf))] was 0.48, indicating that radioactive material was distributed predominantly into plasma. Lersivirine was extensively metabolized, primarily by UDP glucuronosyltransferase- and cytochrome P450-dependent pathways, with 22 metabolites being identified in this study. Analysis of precipitated plasma revealed that the lersivirine-glucuronide conjugate was the major circulating component (45% of total radioactivity), whereas unchanged lersivirine represented 13% of total plasma radioactivity. In vitro studies showed that UGT2B7 and CYP3A4 are responsible for the majority of lersivirine metabolism in humans.


Subject(s)
Nitriles/metabolism , Pyrazoles/metabolism , Reverse Transcriptase Inhibitors/metabolism , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/urine , Area Under Curve , Biocatalysis , Cytochrome P-450 CYP3A/metabolism , Dealkylation , Feces/chemistry , Glucuronidase/metabolism , Glucuronides/analysis , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Hydrolysis , Hydroxylation , Kinetics , Male , Microsomes, Liver/enzymology , Middle Aged , Molecular Structure , Nitriles/adverse effects , Nitriles/pharmacokinetics , Nitriles/urine , Oxidation-Reduction , Pyrazoles/adverse effects , Pyrazoles/pharmacokinetics , Pyrazoles/urine , Recombinant Proteins/metabolism , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/urine , Sulfates/metabolism , Tandem Mass Spectrometry
10.
Mol Pharm ; 7(2): 398-411, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20025245

ABSTRACT

The objective of this work was to further investigate the reasons for disconcordant clinical digoxin drug interactions (DDIs) particularly for false negative where in vitro data suggests no P-glycoprotein (P-gp) related DDI but a clinically relevant DDI is evident. Applying statistical analyses of binary classification and receiver operating characteristic (ROC), revised cutoff values for ratio of [I]/IC(50) < 0.1 and [I(2)]/IC(50) < 5 were identified to minimize the error rate, a reduction of false negative rate to 9% from 36% (based on individual ratios). The steady state total C(max) at highest dose of the inhibitor is defined as [I] and the ratio of the nominal maximal gastrointestinal concentration determined for highest dose per 250 mL volume defined [I(2)](.) We also investigated the reliability of the clinical data to see if recommendations can be made on values that would allow predictions of 25% change in digoxin exposure. The literature derived clinical digoxin interaction studies were statistically powered to detect relevant changes in exposure associated with digitalis toxicities. Our analysis identified that many co-meds administered with digoxin are cardiovascular (CV) agents. Moreover, our investigations also suggest that the presence of CV agents may alter cardiac output and/or kidney function that may act alone or are additional components to enhance digoxin exposure along with P-gp interaction. While we recommend digoxin as the probe substrate to define P-gp inhibitory potency for clinical assessment, we observed high concordance in P-gp inhibitory potency for calcein AM as a probe substrate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Digoxin/metabolism , Drug Interactions , Pharmaceutical Preparations/metabolism , Clinical Trials as Topic , Humans , Inhibitory Concentration 50
11.
Br J Clin Pharmacol ; 67(4): 445-54, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19371318

ABSTRACT

AIMS: Midazolam (MDZ) is a benzodiazepine used as a CYP3A4 probe in clinical and in vitro studies. A glucuronide metabolite of MDZ has been identified in vitro in human liver microsome (HLM) incubations. The primary aim of this study was to understand the in vivo relevance of this pathway. METHODS: An authentic standard of N-glucuronide was generated from microsomal incubations and isolated using solid-phase extraction. The structure was confirmed using proton nuclear magnetic resonance (NMR) and (1)H-(13)C long range correlation experiments. The metabolite was quantified in vivo in human urine samples. Enzyme kinetic behaviour of the pathway was investigated in HLM and recombinant UGT (rUGT) enzymes. Additionally, preliminary experiments were performed with 1'-OH midazolam (1'-OH MDZ) and 4-OH-midazolam (4-OH MDZ) to investigate N-glucuronidation. RESULTS: NMR data confirmed conjugation of midazolam N-glucuronide (MDZG) standard to be on the alpha-nitrogen of the imidazole ring. In vivo, MDZG in the urine accounted for 1-2% of the administered dose. In vitro incubations confirmed UGT1A4 as the enzyme of interest. The pathway exhibited atypical kinetics and a substrate inhibitory cooperative binding model was applied to determine K(m) (46 microM, 64 microM), V(max) (445 pmol min(-1) mg(-1), 427 pmol min(-1) mg(-1)) and K(i) (58 microM, 79 microM) in HLM and rUGT1A4, respectively. From incubations with HLM and rUGT enzymes, N-glucuronidation of 1'-OH MDZ and 4-OH MDZ is also inferred. CONCLUSIONS: A more complete picture of MDZ metabolism and the enzymes involved has been elucidated. Direct N-glucuronidation of MDZ occurs in vivo. Pharmacokinetic modelling using Simcyp illustrates an increased role for UGT1A4 under CYP3A inhibited conditions.


Subject(s)
Anti-Anxiety Agents/metabolism , Glucuronides/metabolism , Midazolam/metabolism , Cytochrome P-450 CYP3A , Glucuronides/isolation & purification , Glucuronides/urine , Humans , Magnetic Resonance Spectroscopy , Microsomes, Liver/metabolism , Midazolam/chemistry
12.
J Pharm Sci ; 98(12): 4914-27, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19373887

ABSTRACT

The utility of the diaminoquinazoline derivative CP-100,356 as an in vivo probe to selectively assess MDR1/BCRP-mediated drug efflux was examined in the rat. CP-100,356 was devoid of inhibition (IC(50) >50 microM) against major human P450 enzymes including P4503A4. In human MDR1-transfected MDCKII cells, CP-100,356 inhibited acetoxymethyl calcein (calcein-AM) uptake (IC(50) approximately 0.5 +/- 0.07 microM) and digoxin transport (IC(50) approximately 1.2 +/- 0.1 microM). Inhibition of prazosin transport (IC(50) approximately 1.5 +/- 0.3 microM) in human BCRP-transfected MDCKII cells by CP-100,356 confirmed the dual MDR1/BCRP inhibitory properties. CP-100,356 was a weak inhibitor of OATP1B1 (IC(50) approximately 66 +/- 1.1 microM) and was devoid of MRP2 inhibition (IC(50) >15 microM). In vivo inhibitory effects of CP-100,356 in rats were examined after coadministration with MDR1 substrate fexofenadine and dual MDR1/BCRP substrate prazosin. Coadministration with increasing doses of CP-100,356 resulted in dramatic increases in systemic exposure of fexofenadine (36- and 80-fold increase in C(max) and AUC at a CP-100,356 dose of 24 mg/kg). Significant differences in prazosin pharmacokinetics were also discernible in CP-100,356-pretreated rats as reflected from a 2.6-fold increase in AUC. Coadministration of CP-100,356 and P4503A substrate midazolam did not result in elevations in systemic exposure of midazolam in the rat. The in vivo methodology should have utility in drug discovery in selective and facile assessment of the role of MDR1 and BCRP efflux transporters in oral absorption of new drug candidates.


Subject(s)
Calcium Channel Blockers/pharmacology , Carrier Proteins/metabolism , Intestinal Absorption/drug effects , Isoquinolines/pharmacology , Pharmaceutical Preparations/metabolism , Quinazolines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/antagonists & inhibitors , Animals , Anti-Allergic Agents/pharmacokinetics , Area Under Curve , CHO Cells , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Estradiol/pharmacokinetics , Hypnotics and Sedatives/pharmacokinetics , Male , Midazolam/pharmacokinetics , Prazosin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Sympatholytics/pharmacokinetics , Terfenadine/analogs & derivatives , Terfenadine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...