Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2628: 291-300, 2023.
Article in English | MEDLINE | ID: mdl-36781793

ABSTRACT

Plasma extracellular vesicles and particles (EVPs) are enriched in biomolecules that reflect individuals' physiological and pathological states. Several studies have demonstrated the potential of human plasma EVPs as a novel liquid biopsy. Here we describe a protocol for human plasma EVPs isolation and proteomic characterization. We isolated human plasma EVPs by the classical ultracentrifugation method and performed mass spectrometry-based proteomic profiling. Using this protocol, researchers can reveal the plasma EVPs proteome and explore the clinical application of plasma EVPs proteins for developing disease biomarkers.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Proteomics/methods , Mass Spectrometry , Ultracentrifugation , Blood Proteins/metabolism , Extracellular Vesicles/metabolism , Proteome/metabolism
2.
Cells ; 9(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708779

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the deposition of misfolded proteins in the motor cortex and motor neurons. Although a multitude of ALS-associated mutated proteins have been identified, several have been linked to small extracellular vesicles such as exosomes involved in cell-cell communication. This study aims to determine the proteome of extracellular vesicles isolated from the motor cortex of ALS subjects and to identify novel ALS-associated deregulated proteins. Motor cortex extracellular vesicles (MCEVs) were isolated from human postmortem ALS (n = 10) and neurological control (NC, n = 5) motor cortex brain tissues and the MCEVs protein content subsequently underwent mass spectrometry analysis, allowing for a panel of ALS-associated proteins to be identified. This panel consists of 16 statistically significant differentially packaged proteins identified in the ALS MCEVs. This includes several upregulated RNA-binding proteins which were determined through pathway analysis to be associated with stress granule dynamics. The identification of these RNA-binding proteins in the ALS MCEVs suggests there may be a relationship between ALS-associated stress granules and ALS MCEV packaging, highlighting a potential role for small extracellular vesicles such as exosomes in the pathogenesis of ALS and as potential peripheral biomarkers for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Extracellular Vesicles/metabolism , Motor Cortex/metabolism , Postmortem Changes , Proteome/metabolism , Case-Control Studies , Exosomes/metabolism , Extracellular Vesicles/ultrastructure , Gene Ontology , Humans , Lysosomes/metabolism , Models, Biological , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...