Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Sci (Basel) ; 12(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35663347

ABSTRACT

Human immunodeficiency virus (HIV)-infected individuals display an enhanced production of reactive oxygen species (ROS). This reduction of antioxidant capacity in host tissues has been related to the decrease in total levels of ROS scavengers such as glutathione (GSH). Prevention of opportunistic infections due to a weakened immune system is becoming a key strategy along with HIV elimination. Research in these directions is clearly warranted, especially a combination of antiretrovirals and antioxidants to ameliorate oxidative stress, improve intracellular uptake and target viral reservoirs. Hence, we aimed to formulate liposomes loaded with the antiretroviral drug efavirenz (EFA) in the presence of glutathione, as these carriers can be engineered to enhance the ability to reach the target reservoirs. The goal of the present work was to investigate the intracellular uptake of EFA-loaded liposome (with and without GSH) by human monocytic leukemia cells (THP-1 cells) and examine cell viability and ROS scavenging activity. Results obtained provided significant data as follows: (i) treatment with EFA and GSH combination could enhance the uptake and reduce cytotoxicity; (ii) encapsulation of EFA into liposomes increased its levels in the macrophages, which was further enhanced in the presence of GSH; (iii) delivery of EFA in the presence of GSH quenched the intracellular ROS, which was significantly higher when delivered via liposomes. Data revealed that a combination of EFA and GSH encompasses advantages; hence, GSH supplementation could be a safe and cost-effective treatment to slow the development of HIV infection and produce an immune-enhancing effect.

2.
AAPS PharmSciTech ; 23(6): 178, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761149

ABSTRACT

Physicochemical and formulation factors influencing penetration of drugs from topical products into the skin and mechanisms of drug permeation are well investigated and reported in the literature. However, mechanisms of drug absorption during short-term exposure have not been given sufficient importance. In this project, the extent of absorption of drug molecules into the skin from aqueous and ethanolic solutions following a 5-min application period was investigated. The experiments demonstrated measurable magnitude of absorption into the skin for all the molecules tested despite the duration of exposure being only few minutes. Among the two solvents used, absorption was greater from aqueous than ethanolic solution. The results suggest that an alternative penetration pathway, herein referred to as the convective transport pathway, is likely responsible for the rapid, significant uptake of drug molecules during initial few minutes of exposure. Additionally, absorption through the convective transport pathways is a function of the physicochemical nature of the formulation vehicle rather than the API.


Subject(s)
Skin Absorption , Skin , Administration, Cutaneous , Biological Transport , Ethanol , Excipients/metabolism , Skin/metabolism , Solvents/chemistry
3.
Int J Vitam Nutr Res ; 92(5-6): 342-348, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32885741

ABSTRACT

Resveratrol (RES) in combination with antioxidant vitamins is reported to be more effective in protecting the cells from oxidative stress rather than any of these antioxidants alone. In continuation to our previous work using resveratrol and vitamin C, our main aim was to evaluate the antioxidant restorative effect using chemical and cellular test systems on resveratrol co-encapsulated vitamin E (VE) within liposomes. Z-average size was less than 135 nm, polydispersity index < 0.3; zeta potential > than ± 30 mV and encapsulation efficiency of RES and VE > 90% and 79% respectively. Chemiluminescence measurement indicated that the antioxidative activity of RES could be increased when VE was additionally loaded into liposomes. Inhibition of AAPH induced luminol enhanced chemiluminescence displayed 90% improvement (P < 0.001) in comparison to control; on the other hand 70% luminescence inhibition of ROS production in isolated blood leukocytes (P < 0.001) was observed. Intracellular oxygen-derived radicals measured by flow cytometry using 2'-7'-dichlorodihydrofluorescein diacetate demonstrated about 1.7 fold (P < 0.05) and 1.5 fold (P < 0.001) enhancement of radical scavenging activity in buffy coats under basal conditions and human umbilical vein endothelial cells after stimulation by H2O2 respectively. The cellular systems evidenced the ability of liposome loaded antioxidants to scavenge ROS in the extra and intracellular space, confirming enhanced antioxidative effectivity of RES in the presence of VE, which did not occur in combination with vitamin C. Hence it might be possible to improve the antioxidative effectivity of RES by other/additional antioxidants.


Subject(s)
Antioxidants , Stilbenes , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Endothelial Cells , Humans , Hydrogen Peroxide , Liposomes , Luminol , Oxygen , Reactive Oxygen Species , Resveratrol/pharmacology , Stilbenes/pharmacology , Vitamin E/pharmacology , Vitamins
4.
Ther Deliv ; 12(4): 325-336, 2021 04.
Article in English | MEDLINE | ID: mdl-33759568

ABSTRACT

Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.


Subject(s)
Drug Delivery Systems , Nanoparticles , Animals , Drug Carriers , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...