Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4155, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814776

ABSTRACT

Declines in animal body sizes are widely reported and likely impact ecological interactions and ecosystem services. For harvested species subject to multiple stressors, limited understanding of the causes and consequences of size declines impedes prediction, prevention, and mitigation. We highlight widespread declines in Pacific salmon size based on 60 years of measurements from 12.5 million fish across Alaska, the last largely pristine North American salmon-producing region. Declines in salmon size, primarily resulting from shifting age structure, are associated with climate and competition at sea. Compared to salmon maturing before 1990, the reduced size of adult salmon after 2010 has potentially resulted in substantial losses to ecosystems and people; for Chinook salmon we estimated average per-fish reductions in egg production (-16%), nutrient transport (-28%), fisheries value (-21%), and meals for rural people (-26%). Downsizing of organisms is a global concern, and current trends may pose substantial risks for nature and people.


Subject(s)
Body Size , Ecosystem , Fisheries/statistics & numerical data , Salmon/growth & development , Age Factors , Alaska , Animals , Climate , Climate Change , Fishes/classification , Fishes/growth & development , Geography , Population Dynamics , Risk Factors , Salmon/classification , Species Specificity
2.
Oecologia ; 168(1): 43-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21748321

ABSTRACT

We conducted a field study in Iliamna Lake, Alaska, to test the hypothesis that proximity of three-spined sticklebacks Gasterosteus aculeatus to the lake's surface during the daytime varies with macroparasitic cestode parasite Schistocephalus solidus infection in a manner consistent with enhanced vulnerability to avian predators. Extensive sampling in the lake and likelihood-based modeling revealed that sticklebacks displayed a diel vertical migration, being closer to the surface at night than during the evening and early morning. Additional sampling, also coupled with a likelihood-based modeling approach, showed that fish caught at the surface of the lake during the day were more often parasitized (76 vs. 65%), more heavily parasitized (26.8 vs. 22.7% of their body mass), and had larger individual parasites (0.24 vs. 0.20 g) than those caught at night. Parasite infection was related, non-linearly, to fish size, which also differed between day and night sampling at the surface. We performed statistical competitions among nested hierarchies of models that accounted for this effect of length. The most likely models indicated that fish captured during the day had greater parasite prevalence, higher parasite burdens, and larger parasites than did fish captured at night. Proximity to the surface during the day in this very clear lake would likely increase the vulnerability of sticklebacks to predation from birds, enabling completion of the parasite's lifecycle.


Subject(s)
Behavior, Animal , Cestode Infections/veterinary , Fish Diseases/parasitology , Smegmamorpha/parasitology , Alaska , Animals , Cestode Infections/parasitology , Host-Parasite Interactions , Lakes , Life Cycle Stages , Models, Biological , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...