Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374765

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a global burden, responsible for over 1 million deaths annually. The emergence and spread of drug-resistant M. tuberculosis strains (MDR-, XDR- and TDR-TB) is the main challenge in global TB-control, requiring the development of novel drugs acting on new biotargets, thus able to overcome the drug-resistance. Tryptanthrin is a natural alkaloid, with great therapeutic potential due to its simple way of synthesis and wide spectrum of biological activities including high bactericidal activity on both drug-susceptible and MDR M. tuberculosis strains. InhA was suggested as the target of tryptanthrins by in silico modeling, making it a promising alternative to isoniazid, able to overcome drug resistance provided by katG mutations. However, neither the mechanism of action of tryptanthrin nor the mechanism of resistance to tryptanthrins was ever confirmed in vitro. We show that the MmpS5-MmpL5 efflux system is able to provide resistance to tryptanthrins using an in-house test-system. Comparative genomic analysis of spontaneous tryptanthrin-resistant M. smegmatis mutants showed that mutations in MSMEG_1963 (EmbR transcriptional regulator) lead to a high-level resistance, while those in MSMEG_5597 (TetR transcriptional regulator) to a low-level one. Mutations in an MFS transporter gene (MSMEG_4427) were also observed, which might be involved in providing a basal level of tryptanthrins-resistance.

2.
Curr Org Synth ; 16(2): 288-293, 2019.
Article in English | MEDLINE | ID: mdl-31975678

ABSTRACT

AIM AND OBJECTIVE: The present study was performed with the aim to develop an efficient and environmentally benign protocol for the synthesis of biologically siginifcant 3, 4-dihydropyrano[c]chromenes using a new catalytic material. The protocol involves the use of a reusable, environment friendly materials and solvents with operational simplicity. MATERIALS AND METHODS: Carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin were synthesized, characterized with well versed analytical techniques such as XRD, SEM and Raman spectroscopy and the synthesized material was used as a catalyst for the environmentally benign synthesis of 3,4-dihydropyrano[c]chromenes. RESULTS: The formation of carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin was confirmed by XRD, SEM and Raman spectroscopy which was employed as a heterogeneous material for the synthesis of 3,4-dihydropyrano[c]chromenes. The products formed were characterized by the analysis of spectroscopic data - NMR, IR and mass. The safe catalytic system offers several advantages including operational simplicity, environmental friendliness, high yield, and reusability of catalyst and green chemical transformation. CONCLUSION: Herein we report an easy and efficient protocol for the one-pot synthesis of dihydropyrano[ c]chromenes using environmentally benign MCR approach in ethanol as the green solvent. The method developed herein constitutes a valuable addition to the existing methods for the synthesis of titled compounds.

3.
Article in English | MEDLINE | ID: mdl-29760146

ABSTRACT

The in vitro antifungal activity of aspirin against cryptococcal cells has been reported. However, the unwanted effects of aspirin may limit its clinical application. Conceivably, a derivative of aspirin could overcome this challenge. Toward this end, this study considered the usage of an aspirinate-metal complex, namely, copper acyl salicylate (CAS), as an anti-Cryptococcus antifungal agent. Additionally, the study examined the effects of this compound on macrophage function. The in vitro susceptibility results revealed that cryptococcal cells were vulnerable (in a dose-dependent manner) to CAS, which might have effected growth inhibition by damaging cryptococcal cell membranes. Interestingly, when CAS was used in combination with fluconazole or amphotericin B, synergism was observed. Furthermore, CAS did not negatively affect the growth or metabolic activity of macrophages; rather, it sensitized those immune cells to produce interferon gamma and interleukin 6, which, in turn, might have aided in the phagocytosis of cryptococcal cells. Compared to our aspirin data, CAS was noted to be more effective in killing cryptococcal cells (based on susceptibility results) and less toxic toward macrophages (based on growth inhibition results). Taking these findings together, it is reasonable to conclude that CAS may be a better anti-Cryptococcus drug that could deliver better therapeutic outcomes, compared to aspirin.


Subject(s)
Antifungal Agents/pharmacology , Copper/pharmacology , Amphotericin B/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cryptococcus/drug effects , Cryptococcus/metabolism , Drug Synergism , Interferon-gamma/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Microbial Sensitivity Tests
4.
Langmuir ; 33(38): 9907-9915, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28826212

ABSTRACT

Three-dimensionally organized lipid cubic self-assemblies and derived oil-in-water emulsions called "cubosomes" are attractive for various biotechnological applications due to their ability to be loaded with functional molecules and their associated sustained release properties. Here, we employed both of these lipid-based systems for the delivery of a model drug, aspirin, under comparable conditions. Studies were performed by varying drug-to-lipid ratio and the type of release medium, water and phosphate buffer saline (PBS). Release rates were determined using UV-vis spectroscopy, and small-angle X-ray scattering was used to confirm the type of self-assembled nanostructures formed in these lipid systems. The release from the bulk lipid cubic phase was sustained as compared to that of dispersed cubosomes, and the release in PBS was more efficient than in water. The tortuosity of the architecture, length of the diffusion pathway, type of nanostructure, and physicochemical interaction with the release media evidently contribute to these observations. This work is particularly important as it is the first report where both of these nanostructured lipid systems have been studied together under similar conditions. This work provides important insights into understanding and therefore controlling the release behavior of lipid-based drug nanocarriers.


Subject(s)
Aspirin/chemistry , Diffusion , Drug Delivery Systems , Lipids , Nanostructures , Water
5.
J Nat Prod ; 78(8): 1848-58, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26235033

ABSTRACT

A series of readily synthesized and inexpensive aminoalkylated chalcones and diarylpropane analogues (1-55) were synthesized and tested against chloroquinone-sensitive (D10 and NF54) and -resistant (Dd2 and K1) strains of Plasmodium falciparum. Hydrogenation of the enone to a diarylpropane moiety increased antiplasmodial bioactivity significantly. The influence of the structure of the amine moiety, A-ring substituents, propyl vs ethyl linker, and chloride salt formation on further enhancing antiplasmodial activity was investigated. Several compounds have IC50 values similar to or better than chloroquine (CQ). The most active compound (26) had an IC50 value of 0.01 µM. No signs of resistance were detected, as can be expected from compounds with structures unrelated to CQ and other currently used antimalarial drugs. Toxicity tests (in vitro CHO cell assay) gave high SI indices.


Subject(s)
Antimalarials , Chalcones , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , CHO Cells , Cell Survival/drug effects , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chloroquine/pharmacology , Combinatorial Chemistry Techniques , Cricetinae , Cricetulus , Drug Resistance/drug effects , Inhibitory Concentration 50 , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Structure-Activity Relationship
6.
J Nat Prod ; 77(3): 583-8, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24354397

ABSTRACT

Aspalathin (1), a dihydrochalcone C-glucoside, exhibits powerful plasma sugar-lowering properties and thus potentially could be used to treat diabetes. Small quantities occur in rooibos tea, manufactured via fermentation of the leaves of Aspalathus linearis, hence necessitating the need for an efficient and concise synthesis. Efforts to synthesize aspalathin (1) via coupling of a glucose donor to the nucleophilic phloroglucinol ring of the dihydrochalcone moiety have invariably failed, presumably because of ring deactivation by the electron-withdrawing carbonyl group. Reduction of the carbonyl group of a chalcone (15) and coupling of the resulting 1,3-diarylpropane (16) to tetra-O-benzyl-ß-D-glucopyranose afforded the C-glucosyl-1,3-diarylpropane (17). Regiospecific benzylic oxidation regenerated the carbonyl group and afforded the per-O-methylaspalathin (1a) quantitatively. This method was not successful with the per-O-benzyl-protected dihydrochalcone. However, the nucleophilicity of the phenolic hydroxy groups of the dihydrochalcone or its acetophenone precursor is not diminished by the carbonyl group. Thus, glucosylation of the di-O-benzylacetophenone (5c) at -40 °C afforded the α-O-glucoside (19) in 86% yield. Raising the temperature allowed facile BF3-catalyzed rearrangement to the ß-C-glucoside (6b), which upon hydrogenation, afforded aspalathin (1) in 80% overall yield [based on the usage of di-O-benzylphloroacetophenone (5c) and tetra-O-benzyl-1α-fluoro-ß-D-glucose (2e)].


Subject(s)
Biological Products/chemical synthesis , Biological Products/pharmacology , Chalcones/chemical synthesis , Chalcones/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Aspalathus/chemistry , Biological Products/chemistry , Blood Glucose/analysis , Blood Glucose/drug effects , Chalcones/chemistry , Hypoglycemic Agents/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...