Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(11): e32559, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961976

ABSTRACT

In a field study, the impact of different levels of brewery sludge (BS) enrichment on Triticum aestivum L. (wheat plants) was examined in terms of growth, yield, heavy metal absorption, and potential health risks linked to plant consumption. Using a randomized complete block design with seven treatments and three blocks, the study showed that applying up to 12 t ha-1 brewery sludge significantly improved all agronomic parameters (except harvest index) compared to control and mineral-fertilized soil. Heavy metal translocation was generally low, except for Cu and Pb. The sequence of heavy metal translocation was Cu > Pb > Cd > Ni > Zn > Mn > Cr from soil to spikes and Cu > Zn > Mn > Pb > Ni > Cd > Cr from soil to grain. Heavy metal loads were mostly higher in roots than in the above-ground crop parts. The target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR) within wheat grain remained within safe limits for all BS treatments. Consequently, consuming this wheat grain is considered safe regarding heavy metals. Thus, utilizing brewery sludge at 12 t ha-1 as a fertilizer for wheat production and as an alternative method for sludge disposal is plausible.

2.
Plant Physiol ; 187(3): 1636-1652, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618074

ABSTRACT

Plant MICRORNA164 (miR164) plays diverse regulatory functions by post-transcriptional repression of certain NAM/ATAF/CUC-domain transcription factors. However, the involvement of miR164 in fleshy fruit development and ripening remains poorly understood. Here, de novo prediction of tomato (Solanum lycopersicum) MIR164 genes identified four genes (SlMIR164a-d), of which SlMIR164d has an atypically long pre-miRNA. The roles of the fruit expressed SlMIR164a, b, and d were studied by analysis of their Clustered Regularly Interspaced Short Palindromic Repeats mutants. The slmir164bCR mutant plants exhibited shoot and flower abnormalities characteristic of ectopic boundary specification, whereas the shoot and flower development of slmir164aCR and slmir164dCR mutants were indistinguishable from wild-type. Strikingly, the knockout of SlMIR164a practically eliminated sly-miR164 from the developing and ripening fruit pericarp. The sly-miR164-deficient slmir164aCR fruits were smaller than the wild-type, due to reduced pericarp cell division and expansion, and displayed intense red color and matte, instead of glossy appearance, upon ripening. We found that the fruit skin phenotypes were associated with morphologically abnormal outer epidermis and thicker cuticle. Quantitation of sly-miR164 target transcripts in slmir164aCR ripening fruits demonstrated the upregulation of SlNAM3 and SlNAM2. Specific expression of their miR164-resistant versions in the pericarp resulted in the formation of extremely small fruits with abnormal epidermis, highlighting the importance of their negative regulation by sly-miR164a. Taken together, our results demonstrate that SlMIR164a and SlMIR164b play specialized roles in development: SlMIR164b is required for shoot and flower boundary specification, and SlMIR164a is required for fruit growth including the expansion of its outer epidermis, which determines the properties of the fruit skin.


Subject(s)
CRISPR-Cas Systems , Fruit/growth & development , Genes, Plant , RNA, Plant/genetics , Solanum lycopersicum/genetics , Fruit/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , RNA, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL