Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 119(3): 859-870, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897785

ABSTRACT

Ceratonova shasta is the etiological agent of myxozoan-associated enteronecrosis in North American salmonids. The parasite's life cycle involves waterborne spores and requires both a salmonid fish and a freshwater fabriciid annelid. The success and survival of annelids can be enhanced by flow moderation by dams, and through the erosion of fine sediments into stream channels following wildfires. In this study, the presence of C. shasta environmental/ex-host DNA (eDNA) in river water and substrate samples collected from areas affected by recent fire activity in California, USA, was investigated. Additionally, DNA loads in the environment were compared to C. shasta infection in sentinel-exposed rainbow trout (Oncorhynchus mykiss). Significant associations between C. shasta detection in environmental samples and location within a wildfire perimeter (p = 0.002), between C. shasta detection in sentinel fish and exposure location within a wildfire perimeter (p = 0.015), and between C. shasta detection in fish and locations where water temperature was above the median (p < 0.001) were observed. Additionally, a higher prevalence of C. shasta infection in fish was detected where C. shasta was also detected in environmental samples (p < 0.001). Results suggest that pathogen eDNA sampling can be used as a non-invasive, rapid, specific, and sensitive method for establishing risk of C. shasta infection in wild populations. Knowledge of the complete life cycle of the target parasite, including ecology of each host, can inform the choice of eDNA sampling strategy. Environmental DNA sampling also revealed a novel species of Ceratonova, not yet observed in a host.


Subject(s)
DNA, Environmental/analysis , Environmental Monitoring/methods , Forests , Myxozoa/isolation & purification , Parasitic Diseases, Animal/parasitology , Animals , California/epidemiology , DNA, Environmental/genetics , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fresh Water/chemistry , Fresh Water/parasitology , Myxozoa/classification , Myxozoa/genetics , Oncorhynchus mykiss/parasitology , Parasitic Diseases, Animal/epidemiology
2.
J Wildl Dis ; 54(4): 659-670, 2018 10.
Article in English | MEDLINE | ID: mdl-29733766

ABSTRACT

Emergent hypermucoviscous (HMV) strains of Klebsiella pneumoniae have been reported in multiple marine mammal species; however, there is limited information regarding the epidemiology and pathogenesis of this infection in these species. We determined the prevalence of HMV K. pneumoniae in wild-caught and stranded marine mammal populations on the US Pacific Coast. Samples were collected from 270 free-ranging California sea lions (CSLs; Zalophus californianus) captured at three discrete sampling sites and from 336 stranded marine mammals of various species. We recovered HMV K. pneumoniae only from CSLs, with a prevalence of 1.5% (4 of 275) in stranded animals, compared with 1.1% (3 of 270) in wild-caught animals. We assessed the phenotypic and genotypic variability of recovered HMV K. pneumoniae isolates recovered from CSLs ( n=11) and of archival HMV and non-HMV isolates from stranded marine mammals ( n=19). All but two HMV isolates were of the K2 serotype, whereas none of the non-HMV isolates belonged to this serotype. Of the HMV isolates, 96% (24 of 25) were PCR positive for the HMV-associated gene p- rmpA, whereas 92% (23 of 25) were PCR positive for p- rmpA2. Genetic fingerprinting by repetitive extragenic palindromic PCR showed four discrete clusters, demonstrating genotypic variability that loosely correlated with phenotype. Antimicrobial susceptibility testing revealed all isolates from stranded CSLs were susceptible to ceftiofur, indicating this antimicrobial agent is an appropriate choice for treatment of HMV K. pneumoniae infections in stranded CSLs. Our culture assay could reliably detect HMV K. pneumoniae from concentrations as low as 102 colony-forming units per milligram of feces. We identified the presence of HMV K. pneumoniae in both wild-caught and stranded CSLs from the US Pacific Coast and highlight the need for further studies to evaluate the potential impact of this pathogen on marine mammal health.


Subject(s)
Klebsiella Infections/veterinary , Klebsiella pneumoniae/genetics , Sea Lions/microbiology , Seals, Earless/microbiology , Animals , Animals, Wild , California/epidemiology , Female , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Male , Prevalence
3.
J Aquat Anim Health ; 30(2): 130-143, 2018 06.
Article in English | MEDLINE | ID: mdl-29710407

ABSTRACT

Myxobolus cerebralis is a myxozoan parasite and the etiological agent of whirling disease in salmonids. The parasite's life cycle involves waterborne spores and requires both a salmonid fish and the benthic freshwater oligochaete worm Tubifex tubifex (Oligochaeta: Tubificidae). Wildfires can lead to the erosion of fine sediments into stream channels and have been implicated as promoting environmental conditions that are suitable for the survival and success of T. tubifex, whose presence in turn can affect the prevalence of M. cerebralis. Analysis of environmental DNA (eDNA) has the potential to be a powerful tool for evaluating the presence of microorganisms, for which direct observation is impossible. We investigated the presence of M. cerebraliseDNA in river water and river sediment samples collected from areas affected by recent fire activity in Plumas National Forest, California. We compared eDNA loads in the environment to M. cerebralis infection in T. tubifex and sentinel-exposed Rainbow Trout Oncorhynchus mykiss and the presence of T. tubifex lineages in the same environment. For the latter, we developed a multiplex quantitative PCR assay for detection of T. tubifex lineages I, III, and V. Lineage IIIT. tubifex and M. cerebralis (eDNA as well as DNA extracted from fish and worm tissues) were detected only in samples obtained from areas affected by the Moonlight wildfire. The association between M. cerebralis infection in sentinel-exposed fish and eDNA detection in environmental samples only approached significance at a P-value of 0.056. However, given the difference in relative effort between the two sampling methods (host versus nonhost environment), our data suggest that eDNA sampling of water and substrate is a promising approach for surveillance of myxozoan fish parasites.


Subject(s)
DNA/analysis , Fish Diseases/parasitology , Myxobolus/isolation & purification , Animals , California , Ecosystem , Environmental Monitoring , Geologic Sediments/chemistry , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Myxobolus/genetics , Oligochaeta/genetics , Oligochaeta/parasitology , Oncorhynchus mykiss , Parasitic Diseases, Animal/parasitology , Rivers/chemistry , Wildfires
4.
Dis Aquat Organ ; 125(1): 7-18, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28627488

ABSTRACT

Veronaea botryosa has been identified as a pathogen of cultured white sturgeon Acipenser transmontanus. In 2015, samples from 19 white sturgeon were received for diagnosis, of which 14 cultured positive for V. botryosa. Intraspecific variability among V. botryosa isolates from different clinically affected hosts and geographic regions was investigated using repetitive extragenic palindromic PCR fingerprinting (rep-PCR). The rep-PCR profiles of 16 V. botryosa isolates from a human, sea turtles, and cultured fish were distinct from those of other phaeoid fungi belonging to the genera Cladophialophora and Exophiala. To gain a better understanding of the pathogenesis of V. botryosa mycosis, 5 laboratory challenge methods were evaluated in white sturgeon fingerlings. Intramuscular (IM) and intracoelomic (IC) injection challenges produced cumulative mortalities of 13.3% (8/60) and 3.3% (2/60), respectively, and V. botryosa was recovered from 100% (10/10) of dead fingerlings. Affected fish exhibited abnormal orientation and/or failure to maintain neutral buoyancy, emaciation, coelomic distension, exophthalmos, cutaneous erythema, and ulcerated skin. After 6 wk, surviving fish were euthanized, and samples of liver were taken for mycological evaluation. Viable fungus was detected in 90% and 100% of fish surviving IM and IC challenge, respectively. No V. botryosa-associated mortality was detected in other groups challenged by immersion, immersion with abrasion, or orally. Both IM and IC challenge routes appear suitable for the induction of V. botryosa infection in white sturgeon and can serve as models for the study of disease pathogenesis associated with this emergent pathogen.


Subject(s)
Ascomycota/genetics , Fish Diseases/microbiology , Phaeohyphomycosis/veterinary , Animals , DNA, Fungal/genetics , Fishes , Phaeohyphomycosis/microbiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...