Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(4): 109564, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38617563

ABSTRACT

The successful commercialization of algal biophotovoltaics (BPV) technology hinges upon a multifaceted approach, encompassing factors such as the development of a cost-efficient and highly conductive anode material. To address this issue, we developed an environmentally benign method of producing reduced graphene oxide (rGO), using concentrated Chlorella sp. UMACC 313 suspensions as the reducing agent. The produced rGO was subsequently coated on the carbon paper (rGO-CP) and used as the BPV device's anode. As a result, maximum power density was increased by 950% for Chlorella sp. UMACC 258 (0.210 mW m-2) and 781% for Synechococcus sp. UMACC 371 (0.555 mW m-2) compared to bare CP. The improved microalgae adhesion to the anode and improved electrical conductivity of rGO brought on by the effective removal of oxygen functional groups may be the causes of this. This study has demonstrated how microalgal-reduced GO may improve the efficiency of algal BPV for producing bioelectricity.

2.
Phytochemistry ; 190: 112869, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34274551

ABSTRACT

Four tropical seaweeds, Gracilaria manilaensis Yamamoto & Trono, Ulva reticulata Forsskål, Kappaphycus alvarezii (Doty) L.M.Liao and Turbinaria conoides (J.Agardh) Kützing, collected from various habitats throughout Malaysia, were subjected to temperatures of 40, 35, 30, 25 and 20 °C in the laboratory. An exposure range of 21-38 °C is reported for Malaysian waters. The effect of the temperature exposures on the halocarbon emissions of the seaweeds were determined 4 and 28 h after treatment. The emission rates for a suite of six halocarbons commonly emitted by seaweeds, bromoform (CHBr3), dibromomethane (CH2Br2), diiodomethane (CH2I2), iodomethane (CH3I), dibromochloromethane (CHBr2Cl) and dichlorobromomethane (CHBrCl2), were measured using a cryogenic purge-and-trap sample preparation system coupled to a gas chromatography-mass spectrometry. The emission rate of CHBr3 was the highest of the six halocarbons for all the seaweeds under all the temperatures tested, followed by CH2Br2, and CH2I2. The emission rates were affected by temperature change and exposure duration, but overall responses were unique to each seaweed species. Larger decreases in the emissions of CHBr3, CH2Br2, CH2I2 and CHBr2Cl were found for K. alvarezii and T. conoides after 4 h at 40 °C. In both cases there was a >90% (p < 0.05) reduction in the Fv/Fm value suggesting that photosynthetic actitivity was severely compromised. After a 28 h exposure period, strong negative correlations (r = -0.69 to -0.95; p < 0.01) were observed between temperature and the emission of CHBr3, CH2Br2 and CH2I2 for U. reticulata, K. alvarezii and T. conoides. This suggests a potential decrease in the halocarbon emissions from these tropical seaweeds, especially where the temperature increase is a prolonged event. Strong correlations were also seen between seaweed chlorophyll and carotenoid pigment contents and the emission rates for CHBr3, CH2Br2 and CH2I2 (r = 0.48 to 0.96 and -0.49 to -0.96; p < 0.05). These results suggest that the regulation of halocarbon production versus reactive oxygen species production in seaweeds is an area worthy of further exploration.


Subject(s)
Phaeophyceae , Rhodophyta , Seaweed , Ecosystem , Temperature
3.
Proc Math Phys Eng Sci ; 476(2237): 20190769, 2020 May.
Article in English | MEDLINE | ID: mdl-32518503

ABSTRACT

Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.

4.
PeerJ ; 7: e6758, 2019.
Article in English | MEDLINE | ID: mdl-31041152

ABSTRACT

Marine algae have been reported as important sources of biogenic volatile halocarbons that are emitted into the atmosphere. These compounds are linked to destruction of the ozone layer, thus contributing to climate change. There may be mutual interactions between the halocarbon emission and the environment. In this study, the effect of irradiance on the emission of halocarbons from selected microalgae was investigated. Using controlled laboratory experiments, three tropical marine microalgae cultures, Synechococcus sp. UMACC 371 (cyanophyte), Parachlorella sp. UMACC 245 (chlorophyte) and Amphora sp. UMACC 370 (diatom) were exposed to irradiance of 0, 40 and 120 µmol photons m-2s-1. Stress in the microalgal cultures was indicated by the photosynthetic performance (Fv/Fm, maximum quantum yield). An increase in halocarbon emissions was observed at 120 µmol photons m-2s-1, together with a decrease in Fv/Fm. This was most evident in the release of CH3I by Amphora sp. Synechococcus sp. was observed to be the most affected by irradiance as shown by the increase in emissions of most halocarbons except for CHBr3 and CHBr2Cl. High positive correlation between Fv/Fm and halocarbon emission rates was observed in Synechococcus sp. for CH2Br2. No clear trends in correlation could be observed for the other halocarbons in the other two microalgal species. This suggests that other mechanisms like mitochondria respiration may contribute to halocarbon production, in addition to photosynthetic performance.

5.
PeerJ ; 5: e2918, 2017.
Article in English | MEDLINE | ID: mdl-28149690

ABSTRACT

Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro-momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh-ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro-mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis (Fv∕Fm) and halocarbon emission rates, was significant only for CH2BrCl emission by P. australis (r = 0.47; p ≤ 0.04), implying that photosynthesis may not be closely linked to halocarbon emissions by the seaweeds studied. Bromine was the largest contributor to the total mass of halogen emitted for all the seaweeds at all pH. The highest total amount of bromine emitted by K. alvarezii (an average of 98% of total mass of halogens) and the increase in the total amount of chlorine with decreasing seawater pH fuels concern for the expanding seaweed farming activities in the ASEAN region.

SELECTION OF CITATIONS
SEARCH DETAIL
...