Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Parkinsons Dis ; 2022: 4053665, 2022.
Article in English | MEDLINE | ID: mdl-36466568

ABSTRACT

Background: Gastrointestinal symptoms (GIS) in people with Parkinson's disease (PwP) are often underreported and may remain untreated. Constipation is a common nonmotor symptom that can adversely affect health-related quality of life (QoL); however, the impact of other GIS has not been adequately investigated. Objectives: To investigate the relationship between QoL and constipation using the Bristol Stool Chart, bowel movement frequency, and a perceived constipation measure; and to explore the relationship between QoL and other GIS in an Australian PD cohort. Methods: The impact of constipation and other GIS on QoL, as measured using the PDQ-39 scale, was assessed in a cohort of 144 (89 males, 55 females) clinic-attending PwP. Constipation was assessed using the Bristol Stool Chart as well as a composite constipation measure, and the Gastrointestinal Symptom Rating Scale (GSRS) was used to rate other GIS. Covariate corrected linear regression models were utilised to determine significant associations between GIS and QoL scores. Results: Individual and combined constipation measures were significantly associated with poorer QoL (p=0.032 and p=0.002, respectively). Analysis of GSRS symptom domains showed that in addition to symptoms of gastrointestinal hypomotility, a number of other symptoms such as increased eructation and increased flatus were also associated with poorer QoL. Conclusions: The findings point to the importance of GIS as contributor to health-related QoL in PwP. A better understanding of the relationship between GIS and QoL will help facilitate the development of more effective screening and treatment programs to improve symptom management and QoL for PwP.

2.
Front Neurosci ; 15: 756951, 2021.
Article in English | MEDLINE | ID: mdl-34776854

ABSTRACT

Background: There has been increasing recognition of the importance of the gut microbiome in Parkinson's disease (PD), but the influence of geographic location has received little attention. The present study characterized the gut microbiota and associated changes in host metabolic pathways in an Australian cohort of people with PD (PwP). Methods: The study involved recruitment and assessment of 87 PwP from multiple Movement Disorders Clinics in Australia and 47 healthy controls. Illumina sequencing of the V3 and V4 regions of the 16S rRNA gene was used to distinguish inter-cohort differences in gut microbiota; KEGG analysis was subsequently performed to predict functional changes in host metabolic pathways. Results: The current findings identified significant differences in relative abundance and diversity of microbial operational taxonomic units (OTUs), and specific bacterial taxa between PwP and control groups. Alpha diversity was significantly reduced in PwP when compared to controls. Differences were found in two phyla (Synergistetes and Proteobacteria; both increased in PwP), and five genera (Colidextribacter, Intestinibacter, Kineothrix, Agathobaculum, and Roseburia; all decreased in PwP). Within the PD cohort, there was no association identified between microbial composition and gender, constipation or use of gastrointestinal medication. Furthermore, KEGG analysis identified 15 upregulated and 11 downregulated metabolic pathways which were predicted to be significantly altered in PwP. Conclusion: This study provides the first comprehensive characterization of the gut microbiome and predicted functional metabolic effects in a southern hemisphere PD population, further exploring the possible mechanisms whereby the gut microbiota may exert their influence on this disease, and providing evidence for the incorporation of such data in future individualized therapeutic strategies.

3.
Front Aging Neurosci ; 13: 656623, 2021.
Article in English | MEDLINE | ID: mdl-34177552

ABSTRACT

INTRODUCTION: Cholesterol levels have been associated with age-related cognitive decline, however, such an association has not been comprehensively explored in people with Parkinson's disease (PD). To address this uncertainty, the current cross-sectional study examined the cholesterol profile and cognitive performance in a cohort of PD patients. METHODS: Cognitive function was evaluated using two validated assessments (ACE-R and SCOPA-COG) in 182 people with PD from the Australian Parkinson's Disease Registry. Total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and Triglyceride (TRG) levels were examined within this cohort. The influence of individual lipid subfractions on domain-specific cognitive performance was investigated using covariate-adjusted generalised linear models. RESULTS: Females with PD exhibited significantly higher lipid subfraction levels (TC, HDL, and LDL) when compared to male counterparts. While accounting for covariates, HDL levels were strongly associated with poorer performance across multiple cognitive domains in females but not males. Conversely, TC and LDL levels were not associated with cognitive status in people with PD. CONCLUSION: Higher serum HDL associates with poorer cognitive function in females with PD and presents a sex-specific biomarker for cognitive impairment in PD.

4.
Sci Rep ; 11(1): 6363, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737565

ABSTRACT

Abnormal mitochondrial function is a key process in the pathogenesis of Parkinson's disease (PD). The central pore-forming protein TOM40 of the mitochondria is encoded by the translocase of outer mitochondrial membrane 40 homologue gene (TOMM40). The highly variant '523' poly-T repeat is associated with age-related cognitive decline and age of onset in Alzheimer's disease, but whether it plays a role in modifying the risk or clinical course of PD it yet to be elucidated. The TOMM40 '523' allele length was determined in 634 people with PD and 422 healthy controls from an Australian cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort, using polymerase chain reaction or whole genome sequencing analysis. Genotype and allele frequencies of TOMM40 '523' and APOE ε did not differ significantly between the cohorts. Analyses revealed TOMM40 '523' allele groups were not associated with disease risk, while considering APOE ε genotype. Regression analyses revealed the TOMM40 S/S genotype was associated with a significantly later age of symptom onset in the PPMI PD cohort, but not after correction for covariates, or in the Australian cohort. Whilst variation in the TOMM40 '523' polymorphism was not associated with PD risk, the possibility that it may be a modifying factor for age of symptom onset warrants further investigation in other PD populations.


Subject(s)
Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Genetic Predisposition to Disease , Membrane Transport Proteins/genetics , Parkinson Disease/genetics , Age of Onset , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Australia/epidemiology , Cognitive Dysfunction/pathology , Cohort Studies , Female , Gene Frequency , Genetic Association Studies , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Parkinson Disease/epidemiology , Parkinson Disease/pathology , Polymorphism, Genetic , Risk Factors
5.
Mov Disord Clin Pract ; 8(2): 245-253, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33553495

ABSTRACT

BACKGROUND: While constipation is a well-known non-motor symptom which may precede the onset of the classical motor symptoms of PD, there have been few comprehensive studies of gastrointestinal (GI) symptoms in people with PD (PwP). OBJECTIVES: To investigate the spectrum of GI symptoms in an Australian PwP cohort and their relationship to use of anti-parkinsonian medications dietary habits and smoking. METHODS: The prevalence and severity of GI symptoms were compared in a group of 163 PwP and 113 healthy control subjects using the Gastrointestinal Symptom Rating Scale (GSRS). Corrected linear regression models were used to determine differences between PwP and controls, and to investigate the influence of different classes of anti-Parkinsonian medications. RESULTS: PwP reported a greater frequency of constipation and GI-associated illnesses when compared to healthy controls. Total GSRS scores (P < 0.0001), upper GI symptoms (P < 0.0001), and hypoactive GI Symptoms (P < 0.0001) were all significantly greater in the PD cohort than controls. Further analyses revealed a positive association between the use of anti-Parkinsonian medications and total GSRS scores (P < 0.001), as well as upper GI symptoms (P < 0.001) and hypoactive GI function (P < 0.001). CONCLUSIONS: This study illustrates the frequency and array of GI symptoms in a large PD cohort. The findings indicate that anti-parkinsonian medications play an important role in the presentation and development of GI symptoms.

6.
J Neurol ; 268(5): 1903-1912, 2021 May.
Article in English | MEDLINE | ID: mdl-33399968

ABSTRACT

BACKGROUND: Cognitive impairment is an important and diverse symptom of Parkinson's disease (PD). Sex is a purported risk variable for cognitive decline in PD, but has not been comprehensively investigated. OBJECTIVES: This cross-sectional and longitudinal study examined sex differences in global and domain-specific cognitive performance in a large PD cohort. METHODS: Cognitive function was evaluated using the Addenbrooke's Cognitive Examination in 392 people with PD (PwP) from the Australian Parkinson's Disease Registry. The influence of sex on domain-specific cognitive performance was investigated using covariate-corrected generalised linear models. In a repeated measures longitudinal subset of 127 PwP, linear mixed models were used to assess the impact of sex on cognition over time, while accounting for covariates. RESULTS: Cross-sectional-corrected modelling revealed that sex was significantly predictive of cognitive performance, with males performing worse than females on global cognition, and memory and fluency domains. Longitudinally, sex was significantly predictive of cognitive decline, with males exhibiting a greater reduction in global cognition and language, whereas females showed a greater decline in attention/orientation, memory and visuospatial domains, despite starting with higher baseline scores. At follow-up, a significantly higher proportion of males than females fulfilled criteria for mild cognitive impairment or PD dementia. CONCLUSIONS: Sex was revealed as a significant determinant of overall cognitive performance as well as specific cognitive domains, with a differential pattern of decline in male and female participants. Such sex-specific findings appear to explain some of the heterogeneity observed in PD, warranting further investigation of mechanisms underlying this sexual dimorphism.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Australia/epidemiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/epidemiology
7.
Front Aging Neurosci ; 12: 603849, 2020.
Article in English | MEDLINE | ID: mdl-33328979

ABSTRACT

Research is increasingly focusing on gut inflammation as a contributor to Parkinson's disease (PD). Such gut inflammation is proposed to arise from a complex interaction between various genetic, environmental, and lifestyle factors, however these factors are under-characterized. This study investigated the association between PD and single-nucleotide polymorphisms (SNPs) in genes responsible for binding of bacterial metabolites and intestinal homeostasis, which have been implicated in intestinal infections or inflammatory bowel disease. A case-control analysis was performed utilizing the following cohorts: (i) patients from the Australian Parkinson's Disease Registry (APDR) (n = 212); (ii) a Caucasian subset of the Parkinson's Progression Markers Initiative (PPMI) cohort (n = 376); (iii) a combined control group (n = 404). The following SNPs were analyzed: PGLYRP2 rs892145, PGLYRP4 rs10888557, TLR1 rs4833095, TLR2 rs3804099, TLR4 rs7873784, CD14 rs2569190, MUC1 rs4072037, MUC2 rs11825977, CLDN2 rs12008279 and rs12014762, and CLDN4 rs8629. PD risk was significantly associated with PGLYRP4 rs10888557 genotype in both cohorts. PGLYRP2 rs892145 and TLR1 rs4833095 were also associated with disease risk in the APDR cohort, and TLR2 rs3804099 and MUC2 rs11825977 genotypes in the PPMI cohort. Interactive risk effects between PGLYRP2/PGLYRP4 and PGLYRP4/TLR2 were evident in the APDR and PPMI cohorts, respectively. In the APDR cohort, the PGLYRP4 GC genotype was significantly associated with age of symptom onset, independently of gender, toxin exposure or smoking status. This study demonstrates that genetic variation in the bacterial receptor PGLYRP4 may modulate risk and age-of-onset in idiopathic PD, while variants in PGLYRP2, TLR1/2, and MUC2 may also influence PD risk. Overall, this study provides evidence to support the role of dysregulated host-microbiome signaling and gut inflammation in PD, and further investigation of these SNPs and proteins may help identify people at risk of developing PD or increase understanding of early disease mechanisms.

8.
Neurochem Res ; 45(5): 1215-1229, 2020 May.
Article in English | MEDLINE | ID: mdl-32140956

ABSTRACT

Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) in ischaemic stroke has been associated with neurotoxicity, blood brain barrier (BBB) disruption and intra-cerebral hemorrhage. To examine rtPA cellular toxicity we investigated the effects of rtPA on cell viability in neuronal, astrocyte and brain endothelial cell (bEnd.3) cultures with and without prior exposure to oxygen-glucose deprivation (OGD). In addition, the neuroprotective peptide poly-arginine-18 (R18D; 18-mer of D-arginine) was examined for its ability to reduce rtPA toxicity. Studies demonstrated that a 4- or 24-h exposure of rtPA was toxic, affecting neuronal cell viability at ≥ 2 µM, and astrocyte and bEnd.3 cells viability at ≥ 5 µM. In addition, a 4-h exposure to rtPA after a period of OGD (OGD/rtPA) exacerbated toxicity, affecting neuronal, astrocyte and bEnd.3 cell viability at rtPA concentrations as low as 0.1 µM. Treatment of cells with low concentrations of R18D (0.5 and 1 µM) reduced the toxic effects of rtPA and OGD/rtPA, while on some occasions a higher 2 µM R18D concentrations exacerbated neuronal and bEnd.3 cell toxicity in OGD/rtPA exposed cultures. In exploratory studies we also demonstrated that OGD activates matrix metalloproteinase-9 (MMP-9) release into the supernatant of astrocyte and bEnd.3 cell cultures, but not neuronal cultures, and that OGD/rtPA increases MMP-9 activation. Furthermore, R18D decreased MMP-9 activation in OGD/rtPA treated astrocyte and bEnd.3 cell cultures. In summary, the findings show that rtPA can be toxic to neural cells and that OGD exacerbates toxicity, while R18D has the capacity to reduce rtPA neural cellular toxicity and reduce MMP-9 activation in astrocytes and bEnd.3. Poly-arginine-18 peptides, which are being developed as neuroprotective therapeutics for ischaemic stroke, therefore have the additional potential of reducing cytotoxic effects associated with rtPA thrombolysis in the treatment of ischaemic stroke.


Subject(s)
Intracellular Signaling Peptides and Proteins/pharmacology , Neurons/drug effects , Neurons/metabolism , Tissue Plasminogen Activator/toxicity , Animals , Animals, Newborn , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Neurons/pathology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/toxicity
9.
Front Neurosci ; 13: 839, 2019.
Article in English | MEDLINE | ID: mdl-31440136

ABSTRACT

The interaction between the gut microbiota and alpha-synuclein (αSyn) aggregation in Parkinson's disease (PD) is receiving increasing attention. The objective of this study was to investigate gut microbiota, and effects of an inflammatory lipopolysaccharide (LPS) trigger in a human αSyn over-expressing mouse model of PD (Thy1-αSyn). Stool samples from patients with confirmed PD and Thy1-αSyn mice were analyzed using 16S ribosomal RNA sequencing. Compared to healthy controls, the relative abundance of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacteria were greater in PD patients. In mice, the abundance of Gammaproteobacteria was negligible in both Thy1-αSyn and wild-type (WT) animals, while Verrucomicrobiae were reduced in Thy1-αSyn mice. The effect of LPS on intestinal barrier function was investigated in vitro using intestinal epithelial (IEC-6) cells, and in vivo via administration of LPS in drinking water to Thy1-αSyn mice. Acute exposure to LPS in vitro resulted in a reduction and altered distribution of the tight junction markers ZO-1 and e-Cadherin around the cell membrane in IEC-6 cells, as shown by immunohistochemistry. LPS administration in Thy1-αSyn mice resulted in the emergence of early motor manifestations at 10 weeks, compared to untreated mice who were still asymptomatic at this age. This study reaffirms that an altered microbiome exists in patients with PD, and supports the notion of a proinflammatory gut microbiome environment as a trigger for PD pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...