Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Protistol ; 86: 125914, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36137332

ABSTRACT

It is challenging to study protists with extensive, loosely-associated extracellular structures because of the problems with keeping specimens intact. Here we have tested the suitability of high-speed flow cytometric sorting as a tool for studying such protists using oceanic loricate choanoflagellates as a model. We chose choanoflagellates because their lorica-to-cell volume ratio is > 10 and the voluminous loricae, i.e., the siliceous cell baskets essential for taxonomic identification, only loosely enclose the cells. Besides, owing to low concentrations, choanoflagellates are grossly under-sampled in the oligotrophic ocean. On four research cruises the small heterotrophic protists from samples collected in the photic layer of the South Atlantic and South Pacific oligotrophic (sub)tropical gyres and adjacent mesotrophic waters were flow sorted at sea for electron microscopy ashore. Among the flow-sorted protozoa we were able to select loricate choanoflagellates to assess their species diversity and concentrations. The well-preserved loricae of flow-sorted choanoflagellates made identification of 29 species from 14 genera possible. In the oligotrophic waters, we found neither endemic species nor evident morphological adaptations other than a tendency for lighter silicification of loricae. Common sightings of specimens storing extra costae in preparation for division, indicate choanoflagellates thriving in oligotrophic waters rather than enduring them. Thus, this case study demonstrates that high-speed flow sorting can assist in studying protists with extracellular structures 16-78× bigger than the enclosed cell.


Subject(s)
Choanoflagellata , Oceans and Seas , Eukaryota , Adaptation, Physiological , Flow Cytometry , Seawater/parasitology
2.
J Plankton Res ; 44(4): 542-558, 2022.
Article in English | MEDLINE | ID: mdl-35898814

ABSTRACT

In the microbe-driven ecosystems of the open ocean, the small heterotrophic flagellates (sHF) are the chief microbial predators and recyclers of essential nutrients to phototrophic microbes. Even with intensive molecular phylogenetic studies of the sHF, the origins of their feeding success remain obscure because of limited understanding of their morphological adaptations to feeding. Here, we examined the sHF morphologies in the largest, most oligotrophic South Pacific and Atlantic (sub)tropical gyres and adjacent mesotrophic waters. On four research cruises, the sHF cells were flow cytometrically sorted from bacterioplankton and phytoplankton for electron microscopy. The sorted sHF comprised chiefly heterokont (HK) biflagellates and unikont choanoflagellates numerically at around 10-to-1 ratio. Of the four differentiated morphological types of HK omnipresent in the open ocean, the short-tinsel heterokont (stHK), whose tinsel flagellum is too short to propagate a complete wave, is predominant and a likely candidate to be the most abundant predator on Earth. Modeling shows that the described stHK propulsion is effective in feeding on bacterioplankton cells at low concentrations; however, owing to general prey scarcity in the oligotrophic ocean, selective feeding is unsustainable and omnivory is equally obligatory for the seven examined sHF types irrespective of their mode of propulsion.

3.
PLoS Biol ; 16(1): e2003502, 2018 01.
Article in English | MEDLINE | ID: mdl-29304142

ABSTRACT

The smallest algae, less than 3 µm in diameter, are the most abundant eukaryotes of the World Ocean. Their feeding on planktonic bacteria of similar size is globally important but physically enigmatic. Tiny algal cells tightly packed with the voluminous chloroplasts, nucleus, and mitochondria appear to have insufficient organelle-free space for prey internalization. Here, we present the first direct observations of how the 1.3-µm algae, which are only 1.6 times bigger in diameter than their prey, hold individual Prochlorococcus cells in their open hemispheric cytostomes. We explain this semi-extracellular phagocytosis by the cell size limitation of the predatory alga, identified as the Braarudosphaera haptophyte with a nitrogen (N2)-fixing endosymbiont. Because the observed semi-extracellular phagocytosis differs from all other types of protistan phagocytosis, we propose to name it "pomacytosis" (from the Greek πώµα for "plug").


Subject(s)
Cyanobacteria/metabolism , Cyanobacteria/physiology , Phagocytosis/physiology , Aquatic Organisms/physiology , Cell Membrane , Cell Nucleus , Chloroplasts , Mitochondria , Prochlorococcus/physiology
4.
Mar Environ Res ; 111: 89-98, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26149327

ABSTRACT

CuO nanoparticles (NPs) released into the aquatic environment will likely accumulate in the sediment. Here we synthesized and characterized CuO NPs with different shapes and thus sizes: spheres, rods and spindles. Nereis diversicolor were exposed for 10 days to control sediment or sediment spiked with CuO NPs or aqueous Cu (Cu-Aq, CuCl2) at 7, 70 and 140 µg Cu g(-1) dw sediment. Cu from all Cu treatments accumulated in worms in a concentration-dependent manner. Only Cu-Aq decreased burrowing, suggesting that worms avoid Cu when added to sediment as Cu-Aq, but not CuO NPs. Transmission Electron Microscopy of gut sections indicated limited presence of CuO NP-like objects in the gut lumen, but evidence on whether accumulated Cu from CuO NP exposure was internalized as particles was not conclusive. Overall, bioavailability and avoidance was not influenced by particle shape or size, whereas Cu form (Cu-Aq vs particulate) and exposure concentration had significant impact.


Subject(s)
Copper/toxicity , Metal Nanoparticles/toxicity , Polychaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Estuaries , Geologic Sediments/analysis , Microscopy, Electron, Transmission , Polychaeta/ultrastructure
5.
Chemosphere ; 100: 97-104, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24411838

ABSTRACT

In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 µg L(-1)) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted<1h and the rate constant at which Au (of Au NPs) was eliminated was 1.12 ± 0.34 h(-1) (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.


Subject(s)
Daphnia/metabolism , Eating , Gold/chemistry , Gold/pharmacokinetics , Metal Nanoparticles , Animals , Digestive System/metabolism , Epithelium/metabolism , Kinetics , Transendothelial and Transepithelial Migration
6.
FEMS Microbiol Ecol ; 83(3): 664-71, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23035812

ABSTRACT

Flow cytometric sorting, based on cellular optical properties and macromolecule content, has been successfully employed to taxonomically affiliate bacterioplankton. However, this approach has not been much used for eukaryotic plankton. To redress this imbalance, we identified a conspicuous group of red autofluorescent picoplankton in surface waters of the South Atlantic Ocean. Using catalysed reporter deposition fluorescence in situ hybridization, virtually, all cells sorted from that group were affiliated with the Mamiellales clade II (84 ± 4%, division Chlorophyta) with a size of 1.6 ± 0.03 µm. Based on electron microscopy, the Mamiellales clade II-sorted cells have a simple morphology with apparently no scales, flagella or surface features. Their latitudinal distribution resembled the distribution of Synechococcus with very low concentrations in the surface waters of the Southern subtropical gyre (0.6-1.6 × 10(3) cells mL(-1)) and increased concentrations in the Southern temperate waters 8.3 × 10(3) cells mL(-1). Identification of the flow cytometric group as Mamiellales clade II allowed us to characterize the morphology of these enigmatic uncultured picoplanktonic cells by electron microscopy and to determine their apparent preference for temperate rather than subtropical oceanic photic waters.


Subject(s)
Chlorophyta/classification , Flow Cytometry , Plankton/classification , Atlantic Ocean , In Situ Hybridization, Fluorescence , Microscopy, Electron , Seawater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...