Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 481: 14-29, 2022 01.
Article in English | MEDLINE | ID: mdl-34543654

ABSTRACT

Environmental teratogens such as smoking are known risk factors for developmental disorders such as cleft palate. While smoking rates have declined, a new type of smoking, called vaping is on the rise. Vaping is the use of e-cigarettes to vaporize and inhale an e-liquid containing nicotine and food-like flavors. There is the potential that, like smoking, vaping could also pose a danger to the developing human. Rather than waiting for epidemiological and mammalian studies, we have turned to an aquatic developmental model, Xenopus laevis, to more quickly assess whether e-liquids contain teratogens that could lead to craniofacial malformations. Xenopus, like zebrafish, has the benefit of being a well-established developmental model and has also been effective in predicting whether a chemical could be a teratogen. We have determined that embryonic exposure to dessert flavored e-liquids can cause craniofacial abnormalities, including an orofacial cleft in Xenopus. To better understand the underlying mechanisms contributing to these defects, transcriptomic analysis of the facial tissues of embryos exposed to a representative dessert flavored e-liquid vapor extract was performed. Analysis of differentially expressed genes in these embryos revealed several genes associated with retinoic acid metabolism or the signaling pathway. Consistently, retinoic acid receptor inhibition phenocopied the craniofacial defects as those embryos exposed to the vapor extract of the e-liquid. Such malformations also correlated with a group of common differentially expressed genes, two of which are associated with midface birth defects in humans. Further, e-liquid exposure sensitized embryos to forming craniofacial malformations when they already had depressed retinoic acid signaling. Moreover, 13-cis-retinoic acid treatment could significantly reduce the e-liquid induced malformation in the midface. Such results suggest the possibility of an interaction between retinoic acid signaling and e-liquid exposure. One of the most popular and concentrated flavoring chemicals in dessert flavored e-liquids is vanillin. Xenopus embryos exposed to this chemical closely resembled embryos exposed to dessert-like e-liquids and a retinoic acid receptor antagonist. In summary, we determined that e-liquid chemicals, in particular vanillin, can cause craniofacial defects potentially by dysregulating retinoic acid signaling. This work warrants the evaluation of vanillin and other such flavoring additives in e-liquids on mammalian development.


Subject(s)
Benzaldehydes/administration & dosage , Craniofacial Abnormalities , Embryo, Nonmammalian/embryology , Flavoring Agents/adverse effects , Signal Transduction/drug effects , Tobacco Products/toxicity , Tretinoin/metabolism , Animals , Benzaldehydes/pharmacology , Craniofacial Abnormalities/chemically induced , Craniofacial Abnormalities/embryology , Embryo, Nonmammalian/pathology , Flavoring Agents/pharmacology , Xenopus laevis
2.
PLoS One ; 12(9): e0185729, 2017.
Article in English | MEDLINE | ID: mdl-28957438

ABSTRACT

Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.


Subject(s)
Aerosols/toxicity , Craniofacial Abnormalities/chemically induced , Electronic Nicotine Delivery Systems , Neural Crest/drug effects , Xenopus laevis/embryology , Animals , Gene Expression Regulation, Developmental/drug effects , Glycerol/toxicity , Mammals , Neural Crest/cytology , Nicotine/toxicity , Propylene Glycol/toxicity
3.
Dev Biol ; 405(1): 108-22, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26144049

ABSTRACT

Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.


Subject(s)
Cleft Palate/embryology , Cleft Palate/metabolism , Face/embryology , Folic Acid/metabolism , Mouth/embryology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cartilage/drug effects , Cartilage/embryology , Cartilage/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage , DNA Methylation/drug effects , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/pathology , Gene Expression Regulation, Developmental/drug effects , Leucovorin/pharmacology , Methotrexate/pharmacology , Models, Biological , Morpholinos/pharmacology , Mouth/metabolism , Muscles/drug effects , Muscles/embryology , Muscles/pathology , Neural Crest/drug effects , Neural Crest/metabolism , Oligonucleotides, Antisense/pharmacology , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/metabolism , Signal Transduction/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , Tretinoin/metabolism , Xenopus laevis
4.
J Vis Exp ; (93): e52062, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25407252

ABSTRACT

Xenopus has become an important tool for dissecting the mechanisms governing craniofacial development and defects. A method to quantify orofacial development will allow for more rigorous analysis of orofacial phenotypes upon abrogation with substances that can genetically or molecularly manipulate gene expression or protein function. Using two dimensional images of the embryonic heads, traditional size dimensions-such as orofacial width, height and area- are measured. In addition, a roundness measure of the embryonic mouth opening is used to describe the shape of the mouth. Geometric morphometrics of these two dimensional images is also performed to provide a more sophisticated view of changes in the shape of the orofacial region. Landmarks are assigned to specific points in the orofacial region and coordinates are created. A principle component analysis is used to reduce landmark coordinates to principle components that then discriminate the treatment groups. These results are displayed as a scatter plot in which individuals with similar orofacial shapes cluster together. It is also useful to perform a discriminant function analysis, which statistically compares the positions of the landmarks between two treatment groups. This analysis is displayed on a transformation grid where changes in landmark position are viewed as vectors. A grid is superimposed on these vectors so that a warping pattern is displayed to show where significant landmark positions have changed. Shape changes in the discriminant function analysis are based on a statistical measure, and therefore can be evaluated by a p-value. This analysis is simple and accessible, requiring only a stereoscope and freeware software, and thus will be a valuable research and teaching resource.


Subject(s)
Maxillofacial Development/physiology , Xenopus laevis/embryology , Animals , Female , Male , Phenotype , Xenopus laevis/anatomy & histology
5.
Mech Dev ; 133: 91-104, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24878353

ABSTRACT

Retinoic acid induced-1 (RAI1) is an important yet understudied histone code reader that when mutated in humans results in Smith-Magenis syndrome (SMS), a neurobehavioral disorder accompanied by signature craniofacial abnormalities. Despite previous studies in mouse and human cell models, very little is known about the function of RAI1 during embryonic development. In the present study, we have turned to the model vertebrates Xenopus laevis and Xenopus tropicalis to better understand the developmental roles of Rai1. First we demonstrate that the Rai1 protein sequence is conserved in frogs, especially in known functional domains. By in situ hybridization we revealed expression of rai1 in the developing craniofacial tissues and the nervous system. Knockdown of Rai1 using antisense morpholinos resulted in defects in the developing brain and face. In particular, Rai1 morphants display midface hypoplasia and malformed mouth shape analogous to defects in humans with SMS. These craniofacial defects were accompanied with aberrant neural crest migration and reduction in the size of facial cartilage elements. Rai1 morphants also had defects in axon patterns and decreased forebrain ventricle size. Such brain defects correlated with a decrease in the neurotrophic factor, bdnf, and increased forebrain apoptosis. Our results emphasize a critical role of Rai1 for normal neural and craniofacial development, and further the current understanding of potential mechanisms that cause SMS.


Subject(s)
Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/metabolism , Xenopus/embryology , Xenopus/metabolism , Animals , Brain/embryology , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Movement , Chondrogenesis , Conserved Sequence , Facial Bones/embryology , Facial Bones/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Mice , Neural Crest/cytology , Neural Crest/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skull/embryology , Skull/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Tretinoin/metabolism , Xenopus/genetics , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus laevis/genetics
6.
Anat Rec (Hoboken) ; 297(5): 834-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24443252

ABSTRACT

Xenopus has become a useful tool to study the molecular mechanisms underlying orofacial development. However, few quantitative analyses exist to describe the anatomy of this region. In this study we combine traditional facial measurements with geometric morphometrics to describe anatomical changes in the orofacial region during normal and abnormal development. Facial measurements and principal component (PC) analysis indicate that during early tadpole development the face expands primarily in the midface region accounting for the development of the upper jaw and primary palate. The mouth opening correspondingly becomes flatter and wider as it incorporates the jaw elements. A canonical variate analysis of orofacial and mouth opening shape emphasized that changes in the orofacial shape occur gradually. Orofacial anatomy was quantified after altered levels of retinoic acid using all-trans retinoic acid or an inhibitor of retinoic acid receptors or by injecting antisense oligos targeting RALDH2. Such perturbations resulted in major decreases in the width of the midface and the mouth opening illustrated in facial measurements and a PC analysis. The mouth opening shape also had a gap in the primary palate resulting in a median cleft in the mouth opening that was only illustrated quantitatively in the morphometric analysis. Finally, canonical and discriminant function analysis statistically distinguished the orofacial and mouth opening shape changes among the different modes used to alter retinoic acid signaling levels. By combining quantitative analyses with molecular studies of orofacial development we will be better equipped to understand the complex morphogenetic processes involved in palate development and clefting.


Subject(s)
Cleft Palate , Maxillofacial Development/physiology , Morphogenesis , Palate/growth & development , Xenopus laevis/growth & development , Animals , Female , Male
7.
Dev Biol ; 365(1): 229-40, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22405964

ABSTRACT

The upper lip and primary palate form an essential separation between the brain, nasal structures and the oral cavity. Surprisingly little is known about the development of these structures, despite the fact that abnormalities can result in various forms of orofacial clefts. We have uncovered that retinoic acid is a critical regulator of upper lip and primary palate development in Xenopus laevis. Retinoic acid synthesis enzyme, RALDH2, and retinoic acid receptor gamma (RARγ) are expressed in complementary and partially overlapping regions of the orofacial prominences that fate mapping revealed contribute to the upper lip and primary palate. Decreased RALDH2 and RARγ result in a median cleft in the upper lip and primary palate. To further understand how retinoic acid regulates upper lip and palate morphogenesis we searched for genes downregulated in response to RARγ inhibition in orofacial tissue, and uncovered homeobox genes lhx8 and msx2. These genes are both expressed in overlapping domains with RARγ, and together their loss of function also results in a median cleft in the upper lip and primary palate. Inhibition of RARγ and decreased Lhx8/Msx2 function result in decreased cell proliferation and failure of dorsal anterior cartilages to form. These results suggest a model whereby retinoic acid signaling regulates Lhx8 and Msx2, which together direct the tissue growth and differentiation necessary for the upper lip and primary palate morphogenesis. This work has the potential to better understand the complex nature of the upper lip and primary palate development which will lead to important insights into the etiology of human orofacial clefts.


Subject(s)
Genes, Homeobox , Tretinoin/metabolism , Xenopus laevis/embryology , Aldehyde Dehydrogenase 1 Family , Aldehyde Oxidase/metabolism , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Larva/metabolism , Morphogenesis , Palate/abnormalities , Palate/embryology , Receptors, Retinoic Acid/metabolism , Retinal Dehydrogenase , Signal Transduction , Xenopus Proteins/metabolism , Xenopus laevis/abnormalities , Xenopus laevis/metabolism , Retinoic Acid Receptor gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...