Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Lab Invest ; 100(3): 414-425, 2020 03.
Article in English | MEDLINE | ID: mdl-31527829

ABSTRACT

Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.


Subject(s)
Hypertension, Renal , Podocytes , Receptors, Prostaglandin E, EP1 Subtype , Animals , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Deletion , Glomerular Filtration Rate/genetics , Hypertension, Renal/metabolism , Hypertension, Renal/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Mice , Mice, Transgenic , Podocytes/cytology , Podocytes/metabolism , Podocytes/pathology , Receptors, Prostaglandin E, EP1 Subtype/genetics , Receptors, Prostaglandin E, EP1 Subtype/metabolism
3.
Am J Physiol Renal Physiol ; 299(6): F1348-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20630933

ABSTRACT

Molecular mechanisms underlying renal complications of diabetes remain unclear. We tested whether renal NADPH oxidase (Nox) 4 contributes to increased reactive oxygen species (ROS) generation and hyperactivation of redox-sensitive signaling pathways in diabetic nephropathy. Diabetic mice (db/db) (20 wk) and cultured mouse proximal tubule (MPT) cells exposed to high glucose (25 mmol/l, D-glucose) were studied. Expression (gene and protein) of Nox4, p22(phox), and p47(phox), but not Nox1 or Nox2, was increased in kidney cortex, but not medulla, from db/db vs. control mice (db/m) (P < 0.05). ROS generation, p38 mitogen-activated protein (MAP) kinase phosphorylation, and content of fibronectin and transforming growth factor (TGF)-ß1/2 were increased in db/db vs. db/m (P < 0.01). High glucose increased expression of Nox4, but not other Noxes vs. normal glucose (P < 0.05). This was associated with increased NADPH oxidase activation and enhanced ROS production. Nox4 downregulation by small-interfering RNA and inhibition of Nox4 activity by GK-136901 (Nox1/4 inhibitor) attenuated d-glucose-induced NADPH oxidase-derived ROS generation. High d-glucose, but not l-glucose, stimulated phosphorylation of p38MAP kinase and increased expression of TGF-ß1/2 and fibronectin, effects that were inhibited by SB-203580 (p38MAP kinase inhibitor). GK-136901 inhibited d-glucose-induced actions. Our data indicate that, in diabetic conditions: 1) renal Nox4 is upregulated in a cortex-specific manner, 2) MPT cells possess functionally active Nox4-based NADPH, 3) Nox4 is a major source of renal ROS, and 4) activation of profibrotic processes is mediated via Nox4-sensitive, p38MAP kinase-dependent pathways. These findings implicate Nox4-based NADPH oxidase in molecular mechanisms underlying fibrosis in type 2 diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Kidney/metabolism , NADPH Oxidases/physiology , Animals , Cells, Cultured , Cytochrome b Group/biosynthesis , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/pathology , Fibrosis , Glucose/pharmacology , Male , Mice , NADPH Oxidase 4 , NADPH Oxidases/biosynthesis , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Pyridones/pharmacology , RNA, Small Interfering/pharmacology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/drug effects
4.
Article in English | MEDLINE | ID: mdl-19625175

ABSTRACT

We have previously demonstrated that the EP1 subtype of PGE2 receptor is expressed in the differentiated compartment of normal human epidermis and is coupled to intracellular calcium mobilization. We therefore hypothesized that the EP1 receptor is coupled to keratinocyte differentiation. In in vitro studies, radioligand binding, RT-PCR, immunoblot and receptor agonist-induced second messenger studies demonstrate that the EP1 receptor is up-regulated by high cell density in human keratinocytes and this up-regulation precedes corneocyte formation. Moreover, two different EP1 receptor antagonists, SC51322 and AH6809, both inhibited corneocyte formation. SC51322 also inhibited the induction of differentiation-specific proteins, cytokeratin K10 and epidermal transglutaminase. We next examined the immunolocalization of the EP1 receptor in non-melanoma skin cancer in humans. Well-differentiated SCCs exhibited significantly greater membrane staining, while spindle cell carcinomas and BCCs had significantly decreased membrane staining compared with normal epidermis. This data supports a role for the EP1 receptor in regulating keratinocyte differentiation.


Subject(s)
Cell Differentiation , Keratinocytes/cytology , Keratinocytes/metabolism , Receptors, Prostaglandin E/classification , Receptors, Prostaglandin E/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Animals , Calcium/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Receptors, Prostaglandin E/antagonists & inhibitors , Receptors, Prostaglandin E/biosynthesis , Receptors, Prostaglandin E, EP1 Subtype , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tumor Cells, Cultured , Xanthones/pharmacology
5.
Kidney Int ; 70(6): 1054-61, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16837921

ABSTRACT

Mutations in the ACTN4 gene, encoding the actin crosslinking protein alpha-actinin-4, are associated with a familial form of focal segmental glomerulosclerosis (FSGS). Mice with podocyte-specific expression of K256E alpha-actinin-4 develop foot process effacement and glomerulosclerosis, highlighting the importance of the cytoskeleton in podocyte structure and function. K256E alpha-actinin-4 exhibits increased affinity for F-actin. However, the downstream effects of this aberrant binding on podocyte dynamics remain unclear. Wild-type and K256E alpha-actinin-4 were expressed in cultured podocytes via adenoviral infection to determine the effect of the mutation on alpha-actinin-4 subcellular localization and on cytoskeletal-dependent processes such as adhesion, spreading, migration, and formation of foot process-like peripheral projections. Wild-type alpha-actinin-4 was detected primarily in the Triton-soluble fraction of podocyte lysates and localized to membrane-associated cortical actin and focal adhesions, with some expression along stress fibers. Conversely, K256E alpha-actinin-4 was detected predominantly in the Triton-insoluble fraction, was excluded from cortical actin, and localized almost exclusively along stress fibers. Both wild-type and K256E alpha-actinin-4-expressing podocytes adhered equally to an extracellular matrix (collagen-I). However, podocytes expressing K256E alpha-actinin-4 showed a reduced ability to spread and migrate on collagen-I. Lastly, K256E alpha-actinin-4 expression reduced the mean number of actin-rich peripheral projections. Our data suggest that aberrant sequestering of K256E alpha-actinin-4 impairs podocyte spreading, motility, and reduces the number of peripheral projections. Such intrinsic cytoskeletal derangements may underlie initial podocyte damage and foot process effacement encountered in ACTN4-associated FSGS.


Subject(s)
Actinin/genetics , Cytoskeleton/pathology , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/physiopathology , Podocytes/pathology , Actinin/metabolism , Adenoviridae/genetics , Animals , Cell Adhesion/genetics , Cell Line, Transformed , Cell Movement/genetics , Cell Transformation, Viral , Disease Models, Animal , Gene Expression , Glomerulosclerosis, Focal Segmental/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...