Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; : 117573, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38796407

ABSTRACT

BACKGROUND AND AIMS: Activation of vascular smooth muscle cell inflammation is recognised as an important early driver of vascular disease. We have previously identified the let-7 miRNA family as important regulators of inflammation in in vitro and in vivo models of atherosclerosis. Here we investigated a dual statin/let-7d-5p miRNA combination therapy approach to target human aortic SMC (HAoSMC) activation and inflammation. METHODS: In vitro studies using primary HAoSMCs were performed to investigate the effects of let-7d-5p miRNA overexpression and inhibition. HAoSMCs were treated with combinations of the inflammatory cytokine tumor necrosis factor-α (TNF-α), and atorvastatin or lovastatin. HAoSMC Bulk RNA-seq transcriptomics of HAoSMCs revealed downstream regulatory networks modulated by let-7d-5p miRNA overexpression and statins. Proteome profiler cytokine array, Western blotting and quantitative PCR analyses were performed on HAoSMCs to validate key findings. RESULTS: Let-7d-5p overexpression significantly attenuated TNF-α-induced upregulation of IL-6, ICAM1, VCAM1, CCL2, CD68, MYOCD gene expression in HAoSMCs (p<0.05). Statins (atorvastatin, lovastatin) significantly attenuated inflammatory gene expression and upregulated Let-7d levels in HAoSMCs (p<0.05). Bulk RNA-seq analysis of a dual Let-7d-5p overexpression/statin therapy in HAoSMCs revealed that let-7d-5p activation and statins converge on key inflammatory pathways (IL-6, IL-1ß, TNF-α, IFN-γ). Let-7d-5p overexpression led to reduced expression of the ox-LDL receptor OLR1, and this was associated with lower ox-LDL uptake in HAoSMCs. In silico analysis of smooth muscle cell phenotypic switching shows that overexpression of let-7d-5p in HAoSMCs maintains a contractile phenotype. CONCLUSIONS: Targeting the Let-7 network alongside statins can modulate HAoSMC activation and attenuate key inflammatory pathway signals.

2.
J Immunol ; 212(12): 1958-1970, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700420

ABSTRACT

Fibroblasts acquire a proinflammatory phenotype in inflammatory bowel disease, but the factors driving this process and how fibroblasts contribute to mucosal immune responses are incompletely understood. TNF superfamily member 12 (TNFSF12, or TNF-like weak inducer of apoptosis [TWEAK]) has gained interest as a mediator of chronic inflammation. In this study, we explore its role as a driver of inflammatory responses in fibroblasts and its contribution to fibroblast-monocyte interaction using human primary colonic fibroblasts, THP-1 and primary monocytes. Recombinant human TWEAK induced the expression of cytokines, chemokines, and immune receptors in primary colonic fibroblasts. The TWEAK upregulated transcriptome shared 29% homology with a previously published transcriptional profile of inflammatory fibroblasts from ulcerative colitis. TWEAK elevated surface expression of activated fibroblast markers and adhesion molecules (podoplanin [PDPN], ICAM-1, and VCAM-1) and secretion of IL-6, CCL2, and CXCL10. In coculture, fibroblasts induced monocyte adhesion and secretion of CXCL1 and IL-8, and they promoted a CD14high/ICAM-1high phenotype in THP-1 cells, which was enhanced when fibroblasts were prestimulated with TWEAK. Primary monocytes in coculture with TWEAK-treated fibroblasts had altered surface expression of CD16 and triggering receptor expressed on myeloid cells-1 (TREM-1) as well as increased CXCL1 and CXCL10 secretion. Conversely, inhibition of the noncanonical NF-κB pathway on colonic fibroblasts with a NF-κB-inducing kinase small molecule inhibitor impaired their ability to induce a CD14high phenotype on monocytes. Our results indicate that TWEAK promotes an inflammatory fibroblast-monocyte crosstalk that may be amenable for therapeutic intervention.


Subject(s)
Cell Differentiation , Colon , Cytokine TWEAK , Fibroblasts , Monocytes , Humans , Cytokine TWEAK/metabolism , Monocytes/immunology , Monocytes/metabolism , Fibroblasts/metabolism , Fibroblasts/immunology , Colon/immunology , Colon/pathology , Colon/metabolism , Cell Differentiation/immunology , Cell Communication/immunology , Inflammation/immunology , THP-1 Cells , Coculture Techniques , Cytokines/metabolism , Cell Adhesion
3.
Bioact Mater ; 21: 142-156, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36093324

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine. However, there remains a necessity to refine the biophysical and biochemical parameters that govern kidney organoid formation. Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation. Here, we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels (SAPHs) of variable stiffness (storage modulus, G'). The resulting organoids contained complex structures comparable to those differentiated within the animal-derived matrix, Matrigel. Single-cell RNA sequencing (scRNA-seq) was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface. A total of 13,179 cells were analysed, revealing 14 distinct clusters. Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids, while SAPH-derived organoids were enriched for stromal-associated cell populations. Notably, differentiation within a higher G' SAPH generated podocytes with more mature gene expression profiles. Additionally, maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types, which are a known limitation of current kidney organoid protocols. This work demonstrates the utility of synthetic peptide-based hydrogels with a defined stiffness, as a minimally complex microenvironment for the selected differentiation of kidney organoids.

4.
Commun Biol ; 5(1): 1301, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36435939

ABSTRACT

TGFß1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+ve/POSTN+ve myofibroblasts in kidney organoids treated with TGFß1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFß signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.


Subject(s)
Chromatin , Induced Pluripotent Stem Cells , Humans , Chromatin/genetics , Organoids , Kidney , Transforming Growth Factor beta/pharmacology , Fibrosis , Protein Kinases , Repressor Proteins
5.
Prev Med ; 127: 105770, 2019 10.
Article in English | MEDLINE | ID: mdl-31344384

ABSTRACT

BACKGROUND: Smoking is responsible for substantial cardiovascular morbidity and mortality. Electronic cigarettes have been advocated as a means to reduce this disease burden; by reducing exposure to harmful substances in smokers who are unable to quit. Concerns have been raised however, about cardiovascular effects of their use, with inhalants containing carbonyls and fine particulate matter. We systematically reviewed experimental studies of in vitro, animal, and human cardiovascular effects associated with electronic cigarette use. METHODS: A literature search was conducted using Ovid MEDLINE & Embase databases, identifying experimental studies investigating cardiovascular effects of electronic cigarette use. Subsequently, Cochrane Risk of Bias tools were used to assess study quality. Any differences in outcomes by conflict of interest and risk of bias status were sought. RESULTS: 38 studies were included, investigating animals (n=6), humans (n=24) and human cardiovascular cells in vitro (n=8). 74.3% of studies found potentially harmful effects. Increased sympathetic nerve activity was observed in human studies, whilst platelet haemostatic processes, reactive oxygen species production and endothelial dysfunction were reported across all study types. Studies with conflicts of interest or median-high risk of bias were less likely to identify potentially harmful effects (p=0.0007, p=0.04 respectively). DISCUSSION: Most studies suggest potential for cardiovascular harm from electronic cigarette use, through mechanisms that increase risk of thrombosis and atherosclerosis. Notably, studies with conflicts of interest are significantly less likely to identify concerning cardiovascular effects. Included studies examine healthy, adult participants, limiting generalisation to potential high-risk groups including individuals with established cardiovascular disease or young, non-smokers.


Subject(s)
Cardiovascular Diseases/etiology , Research , Smoking/adverse effects , Vaping/adverse effects , Animals , Electronic Nicotine Delivery Systems , Health Surveys , Humans , In Vitro Techniques , Particulate Matter/adverse effects
6.
FASEB J ; 33(5): 6667-6681, 2019 05.
Article in English | MEDLINE | ID: mdl-30779601

ABSTRACT

Cell differentiation is directed by extracellular cues and intrinsic epigenetic modifications, which control chromatin organization and transcriptional activation. Central to this process is PRC2, which modulates the di- and trimethylation of lysine 27 on histone 3; however, little is known concerning the direction of PRC2 to specific loci. Here, we have investigated the physical interactome of EZH2, the enzymatic core of PRC2, during retinoic acid-mediated differentiation of neuroepithelial, pluripotent NT2 cells and the dedifferentiation of neuroretinal epithelial ARPE19 cells in response to TGF-ß. We identified Smad3 as an EZH2 interactor in both contexts. Co-occupation of the CDH1 promoter by Smad3 and EZH2 and the cooperative, functional nature of the interaction were established. We propose that the interaction between Smad3 and EZH2 targets the core polycomb assembly to defined regions of the genome to regulate transcriptional repression and forms a molecular switch that controls promoter access through epigenetic mechanisms leading to gene silencing.-Andrews, D., Oliviero, G., De Chiara, L., Watson, A., Rochford, E., Wynne, K., Kennedy, C., Clerkin, S., Doyle, B., Godson, C., Connell, P., O'Brien, C., Cagney, G., Crean, J. Unravelling the transcriptional responses of TGF-ß: Smad3 and EZH2 constitute a regulatory switch that controls neuroretinal epithelial cell fate specification.


Subject(s)
Cell Differentiation , Enhancer of Zeste Homolog 2 Protein/biosynthesis , Epithelial Cells/metabolism , Gene Silencing , Retinal Pigment Epithelium/metabolism , Smad3 Protein/biosynthesis , Transcription, Genetic , Transforming Growth Factor beta/biosynthesis , Cell Line , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Tretinoin/pharmacology
7.
J Cutan Pathol ; 46(2): 117-122, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30430609

ABSTRACT

BACKGROUND: Techniques for the accurate identification of activating mutations of BRAF in metastatic melanoma are of great clinical importance, due to the availability of targeted therapies for these tumors. There is uncertainty regarding the frequency with which BRAF status differs between primary and metastatic sites. METHODS: Between 2011 and 2016, 219 melanoma cases underwent BRAF testing in our institution. In 53 of these cases, paired primary and metastatic specimens were available for polymerase chain reaction (PCR) and immunohistochemical evaluation. RESULTS: Fifty-two out of 53 cases (98%) showed concordant BRAF status between primary and metastatic site by immunohistochemistry (IHC). In one case, a metastasis and its matched primary were positive by IHC, but the metastasis was negative on PCR. On further investigation, PCR was positive in the primary, and repeat PCR in the metastasis was positive, following macrodissection. CONCLUSIONS: Our results suggest that discordance of BRAF mutational status between primaries and metastases is a rare occurrence. In one case, IHC provided strong evidence that initial PCR testing had provided a false-negative result due to low tumor volume. Thus, in cases where tissue is difficult to obtain from a metastasis or unavailable, the primary tumor can be used with confidence.


Subject(s)
Melanoma , Mutation , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Adult , Aged , Female , Humans , Immunohistochemistry , Male , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Neoplasm Metastasis , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
8.
BMC Genomics ; 15: 825, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25266257

ABSTRACT

BACKGROUND: The genetic cascades underpinning vertebrate early eye morphogenesis are poorly understood. One gene family essential for eye morphogenesis encodes the retinal homeobox (Rx) transcription factors. Mutations in the human retinal homeobox gene (RAX) can lead to gross morphological phenotypes ranging from microphthalmia to anophthalmia. Zebrafish rx3 null mutants produce a similar striking eyeless phenotype with an associated expanded forebrain. Thus, we used zebrafish rx3-/- mutants as a model to uncover an Rx3-regulated gene network during early eye morphogenesis. RESULTS: Rx3-regulated genes were identified using whole transcriptomic sequencing (RNA-seq) of rx3-/- mutants and morphologically wild-type siblings during optic vesicle morphogenesis. A gene co-expression network was then constructed for the Rx3-regulated genes, identifying gene cross-talk during early eye development. Genes highly connected in the network are hub genes, which tend to exhibit higher expression changes between rx3-/- mutants and normal phenotype siblings. Hub genes down-regulated in rx3-/- mutants encompass homeodomain transcription factors and mediators of retinoid-signaling, both associated with eye development and known human eye disorders. In contrast, genes up-regulated in rx3-/- mutants are centered on Wnt signaling pathways, associated with brain development and disorders. The temporal expression pattern of Rx3-regulated genes was further profiled during early development from maternal stage until visual function is fully mature. Rx3-regulated genes exhibited synchronized expression patterns, and a transition of gene expression during the early segmentation stage when Rx3 was highly expressed. Furthermore, most of these deregulated genes are enriched with multiple RAX-binding motif sequences on the gene promoter. CONCLUSIONS: Here, we assembled a comprehensive model of Rx3-regulated genes during early eye morphogenesis. Rx3 promotes optic vesicle morphogenesis and represses brain development through a highly correlated and modulated network, exhibiting repression of genes mediating Wnt signaling and concomitant enhanced expression of homeodomain transcription factors and retinoid-signaling genes.


Subject(s)
Retina/metabolism , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified/genetics , Binding Sites , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gene Library , Gene Regulatory Networks , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Morphogenesis/genetics , Sequence Analysis, RNA , Transcriptome , Wnt Signaling Pathway , Zebrafish Proteins/metabolism
9.
PLoS One ; 7(12): e52177, 2012.
Article in English | MEDLINE | ID: mdl-23300608

ABSTRACT

Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3-5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function.


Subject(s)
Gene Expression Regulation, Developmental , Morpholinos/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Vision Disorders/etiology , Zebrafish/metabolism , Animals , Blotting, Western , Electroretinography , Larva/drug effects , Larva/growth & development , Larva/metabolism , Phylogeny , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Vision Disorders/drug therapy , Vision Disorders/pathology , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...