Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35942676

ABSTRACT

Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.


Hypoxic-ischaemic brain injury is the most common cause of disability in newborn babies. This happens when the blood supply to the brain is temporarily blocked during birth and cells do not receive the oxygen and nutrients they need to survive. Cooling the babies down after the hypoxic-ischemic attack (via a technique called hypothermic treatment) can to some extent reduce the damage caused by the injury. However, doctors still need new drugs that can protect the brain and improve its recovery after the injury has occurred. Research in mice suggests that a chemical called lactate might help the brain to recover. Lactate is produced by muscles during hard exercise to provide energy to cells when oxygen levels are low. Recent studies have shown that it can also act as a signalling molecule that binds to a receptor called HCAR1 (short for hydroxycarboxylic acid receptor) on the surface of cells. However, it is poorly understood what role HCAR1 plays in the brain and whether it helps the brain recover from a hypoxic-ischaemic injury. To investigate, Kennedy et al. compared newborn mice with and without the gene that codes for HCAR1 that had undergone a hypoxic-ischaemic brain injury. While HCAR1 did not protect the mice from the disease, it did help their brains to heal. Mice with the gene for HCAR1 partly recovered some of their damaged brain tissue six weeks after the injury. Their cells switched on thousands of genes involved in the immune system and cell cycle, resulting in new brain cells being formed that could repopulate the injured areas. In contrast, the brain tissue of mice lacking HCAR1 barely produced any new cells. These findings suggest that HCAR1 may help with brain recovery after hypoxia-ischemia in newborn mice. This could lead to the development of drugs that might reduce or repair brain damage in newborn babies. However, further studies are needed to investigate whether HCAR1 has the same effect in humans.


Subject(s)
Lactic Acid , Microglia , Receptors, G-Protein-Coupled/metabolism , Animals , Animals, Newborn , Brain/metabolism , Hypoxia/metabolism , Ischemia/metabolism , Lactic Acid/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Neurogenesis
2.
J Vis Exp ; (128)2017 10 23.
Article in English | MEDLINE | ID: mdl-29155726

ABSTRACT

Neurons rely on the electric insulation and trophic support of myelinating oligodendrocytes. Despite the importance of oligodendrocytes, the advanced tools currently used to study neurons, have only partly been taken on by oligodendrocyte researchers. Cell type-specific staining by viral transduction is a useful approach to study live organelle dynamics. This paper describes a protocol for visualizing oligodendrocyte mitochondria in organotypic brain slices by transduction with adeno-associated virus (AAV) carrying genes for mitochondrial targeted fluorescent proteins under the transcriptional control of the myelin basic protein promoter. It includes the protocol for making organotypic coronal mouse brain slices. A procedure for time-lapse imaging of mitochondria then follows. These methods can be transferred to other organelles and may be particularly useful for studying organelles in the myelin sheath. Finally, we describe a readily available technique for visualization of unstained myelin in living slices by Confocal Reflectance microscopy (CoRe). CoRe requires no extra equipment and can be useful to identify the myelin sheath during live imaging.


Subject(s)
Brain/cytology , Microscopy, Confocal/methods , Neurons/cytology , Oligodendroglia/cytology , Animals , Brain/diagnostic imaging , Brain/pathology , Mice , Neurons/pathology , Oligodendroglia/pathology
3.
Nat Commun ; 8: 15557, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28534495

ABSTRACT

Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.


Subject(s)
Brain/blood supply , Neovascularization, Physiologic/physiology , Physical Conditioning, Animal/physiology , Receptors, G-Protein-Coupled/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Capillaries/cytology , Capillaries/drug effects , Capillaries/metabolism , Injections, Subcutaneous , Lactic Acid/administration & dosage , Lactic Acid/blood , Lactic Acid/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Pericytes/metabolism , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...