Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Biomed Opt ; 20(9): 095011, 2015.
Article in English | MEDLINE | ID: mdl-26385541

ABSTRACT

Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ∼0.159 J∕cm2 at 800 nm to 4.5 J∕cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.


Subject(s)
Lasers , Melanosomes/physiology , Melanosomes/radiation effects , Retinal Pigment Epithelium/physiology , Retinal Pigment Epithelium/radiation effects , Absorption, Radiation/physiology , Animals , Cattle , Cell Fractionation/methods , Cells, Cultured , Dose-Response Relationship, Radiation , Maximum Allowable Concentration , Melanosomes/ultrastructure , Radiation Dosage , Retinal Pigment Epithelium/ultrastructure , Species Specificity , Swine
3.
J Biomed Opt ; 19(3): 35003, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24615641

ABSTRACT

Thresholds for microcavitation of bovine and porcine melanosomes were determined using nanosecond laser pulses in the near-infrared (1000 to 1319 nm) wavelength regime. Isolated melanosomes were irradiated by single pulses (10 or 50 ns) using a Q-switched Spectra Physics Nd:YAG laser coupled with an optical parametric oscillator (1000 to 1200 nm) or a continuum laser at 1319 nm. Time-resolved nanosecond strobe photography after the arrival of the irradiation beam allowed imaging of microcavitation events. Average fluence thresholds for microcavitation increased nonlinearly with increasing wavelength from ∼0.5 J/cm2 at 1000 nm to 2.6 J/cm2 at 1319 nm. Fluence thresholds were also measured for 10-ns pulses at 532 nm and found to be comparable to visible nanosecond pulse values published in previous reports. Calculated melanosome absorption coefficients decreased from 925 cm-1 at 1000 nm to 176 cm-1 at 1319 nm. This trend was found to be comparable to the decrease in retinal pigmented epithelial layer absorption coefficients reported over the same wavelength region. Estimated corneal total intraocular energy retinal damage threshold values were determined in order to compare to current and proposed maximum permissible exposure (MPE) safe levels. Results from this study support recently proposed changes to the MPE levels.


Subject(s)
Lasers/adverse effects , Melanosomes/chemistry , Melanosomes/radiation effects , Nanotechnology/methods , Absorption , Animals , Cattle , Hydrodynamics , Infrared Rays , Lasers/standards , Retinal Pigment Epithelium/cytology , Swine
4.
Graefes Arch Clin Exp Ophthalmol ; 243(2): 101-12, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15241612

ABSTRACT

BACKGROUND: In vivo retinal injury studies using sub-50-femtosecond laser pulses in the near-infrared must consider nonlinear effects such as group velocity dispersion (GVD), self-focusing, laser-induced breakdown (LIB) and low-density plasmas (LDPs). In this paper we present the results of our theoretical calculations of nonlinear effects and our experimental measurements for the visible lesion thresholds in live eyes. We compare these values with the measured LIB and LDP thresholds in an artificial eye. All three thresholds were measured with and without pre-chirping the input pulse to compensate for GVD effects. METHODS: We recorded the minimum visible lesion (MVL) thresholds in vivo for sub-50-fs laser pulses, with and without pre-chirping the input pulses. In addition, we measured the LIB and LDP thresholds, with and without pre-chirping, within an artificial eye. Different degrees of pre-chirping were required to give optimal compensation for GVD in the live eye and the artificial eye. Probit analysis was used on all data, and comparisons among thresholds were made, to determine the effects on the three thresholds of chirp compensation for GVD. RESULTS: Results of our nonlinear modeling and calculations for GVD compensation, self-focusing, LIB, and low-density plasmas were compared with our experimental results using live eyes and the artificial eye. The damage threshold in live eyes dropped in energy from 0.25 microJ, for the flat-phase input, to 0.17 microJ when optimally chirped pulses were used, while the LIB threshold was reduced from 0.29 microJ to 0.19 microJ with optimally chirped pulses. The LDP threshold dropped from 0.21 microJ to 0.14 microJ with the pre-chirped pulse. At 44 fs, these energies produced peak powers at least twice the calculated critical power that produces nonlinear self-focusing and beam collapse, for propagation of non-aberrated gaussian beams in a uniform medium. CONCLUSIONS: Based on our measurements of the MVL thresholds, with and without GVD compensation, we conclude that the visible lesion thresholds produced by 44 fs pulses in rhesus eyes are increased in energy due to GVD. The MVL ED50 was reduced by one third when the pulse was pre-chirped to compensate for GVD in the eye. This reduction in amplitude also holds true in the artificial eye for the LIB ED50 bubble thresholds and the LDP ED50 plasma channels, when using pre-chirped pulses versus non-chirped pulses. We also conclude from the data presented that low-density plasmas, and not LIB cavitation bubbles, are the probable mediating factor at the visible lesion thresholds observed within live eyes, for pulse durations at and below 50 fs. Therefore, the plasma channel created by LDPs is the major damage mechanism, if not the only damage mechanism, at MVL threshold energies for these pulse durations.


Subject(s)
Eye Injuries/etiology , Lasers/adverse effects , Retina/injuries , Retinal Diseases/etiology , Visual Perception/physiology , Animals , Eye Injuries/physiopathology , Macaca mulatta , Models, Theoretical , Retina/physiopathology , Retinal Diseases/physiopathology , Sensory Thresholds , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...