Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Rep ; 14(1): 11734, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777815

ABSTRACT

Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.


Subject(s)
Cadmium , Nitrogen , Sulfur , Cadmium/toxicity , Sulfur/metabolism , Sulfur/pharmacology , Nitrogen/metabolism , Biodegradation, Environmental , Euglena/metabolism , Euglena/drug effects , Euglena/genetics , Water Pollutants, Chemical/toxicity , Euglena gracilis/metabolism , Euglena gracilis/drug effects , Euglena gracilis/genetics
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731997

ABSTRACT

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to ß cell activity.


Subject(s)
Hypoglycemia , Pancreas , Placenta , RNA Interference , Transcriptome , Pregnancy , Animals , Female , Placenta/metabolism , Sheep , Pancreas/metabolism , Pancreas/embryology , Hypoglycemia/genetics , Hypoglycemia/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Fetus/metabolism , Fetal Development/genetics , Gene Expression Regulation, Developmental , Glucose/metabolism , Gene Expression Profiling
3.
Cells ; 13(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38474355

ABSTRACT

While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, its function in trophoblast cells has not been determined. To gain insight into the function of SLC2A8 in the placenta, lentiviral-mediated RNA interference (RNAi) was performed in the human first-trimester trophoblast cell line ACH-3P. Non-targeting sequence controls (NTS RNAi; n = 4) and SLC2A8 RNAi (n = 4) infected ACH-3P cells were compared. A 79% reduction in SLC2A8 mRNA concentration was associated with an 11% reduction (p ≤ 0.05) in ACH-3P glucose uptake. NTS RNAi and SLC2A8 RNAi ACH-3P mRNA were subjected to RNAseq, identifying 1525 transcripts that were differentially expressed (|log2FC| > 1 and adjusted p-value < 0.05), with 273 transcripts derived from protein-coding genes, and the change in 10 of these mRNAs was validated by real-time qPCR. Additionally, there were 147 differentially expressed long non-coding RNAs. Functional analyses revealed differentially expressed genes involved in various metabolic pathways associated with cellular respiration, oxidative phosphorylation, and ATP synthesis. Collectively, these data indicate that SLC2A8 deficiency may impact placental uptake of glucose, but that its likely primary function in trophoblast cells is to support cellular respiration. Since the placenta oxidizes the majority of the glucose it takes up to support its own metabolic needs, impairment of SLC2A8 function could set the stage for functional placental insufficiency.


Subject(s)
Placenta , Transcriptome , Humans , Pregnancy , Female , Placenta/metabolism , RNA Interference , Trophoblasts/metabolism , Glucose/metabolism , RNA, Messenger/metabolism
4.
Am J Physiol Endocrinol Metab ; 326(5): E602-E615, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353640

ABSTRACT

We previously demonstrated impaired placental nutrient transfer in chorionic somatomammotropin (CSH) RNA interference (RNAi) pregnancies, with glucose transfer being the most impacted. Thus, we hypothesized that despite experimentally elevating maternal glucose, diminished umbilical glucose uptake would persist in CSH RNAi pregnancies, demonstrating the necessity of CSH for adequate placental glucose transfer. Trophectoderm of sheep blastocysts (9 days of gestational age; dGA) were infected with a lentivirus expressing either nontargeting control (CON RNAi; n = 5) or CSH-specific shRNA (CSH RNAi; n = 7) before transfer into recipient sheep. At 126 dGA, pregnancies were fitted with vascular catheters and underwent steady-state metabolic studies (3H2O transplacental diffusion) at 137 ± 0 dGA, before and during a maternal hyperglycemic clamp. Umbilical glucose and oxygen uptakes, as well as insulin and IGF1 concentrations, were impaired (P ≤ 0.01) in CSH RNAi fetuses and were not rescued by elevated maternal glucose. This is partially due to impaired uterine and umbilical blood flow (P ≤ 0.01). However, uteroplacental oxygen utilization was greater (P ≤ 0.05) during the maternal hyperglycemic clamp, consistent with greater placental oxidation of substrates. The relationship between umbilical glucose uptake and the maternal-fetal glucose gradient was analyzed, and while the slope (CON RNAi, Y = 29.54X +74.15; CSH RNAi, Y = 19.05X + 52.40) was not different, the y-intercepts and elevation were (P = 0.003), indicating reduced maximal glucose transport during maternal hyperglycemia. Together, these data suggested that CSH plays a key role in modulating placental metabolism that ultimately promotes maximal placental glucose transfer.NEW & NOTEWORTHY The current study demonstrated a novel, critical autocrine role for chorionic somatomammotropin in augmenting placental glucose transfer and maintaining placental oxidative metabolism. In pregnancies with CSH deficiency, excess glucose in maternal circulation is insufficient to overcome fetal hypoglycemia due to impaired placental glucose transfer and elevated placental metabolic demands. This suggests that perturbations in glucose transfer in CSH RNAi pregnancies are due to compromised metabolic efficiency along with reduced placental mass.


Subject(s)
Glucose , Placenta , Pregnancy , Female , Animals , Sheep , Placenta/metabolism , Glucose/metabolism , RNA Interference , Placental Lactogen/metabolism , Oxygen/metabolism
5.
Life (Basel) ; 13(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37374044

ABSTRACT

While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies.

6.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293384

ABSTRACT

In the ruminant placenta, glucose uptake and transfer are mediated by facilitative glucose transporters SLC2A1 (GLUT1) and SLC2A3 (GLUT3). SLC2A1 is located on the basolateral trophoblast membrane, whereas SLC2A3 is located solely on the maternal-facing, apical trophoblast membrane. While SLC2A3 is less abundant than SLC2A1, SLC2A3 has a five-fold greater affinity and transport capacity. Based on its location, SLC2A3 likely plays a significant role in the uptake of glucose into the trophoblast. Fetal hypoglycemia is a hallmark of fetal growth restriction (FGR), and as such, any deficiency in SLC2A3 could impact trophoblast glucose uptake and transfer to the fetus, thus potentially setting the stage for FGR. By utilizing in vivo placenta-specific lentiviral-mediated RNA interference (RNAi) in sheep, we were able to significantly diminish (p ≤ 0.05) placental SLC2A3 concentration, and determine the impact at mid-gestation (75 dGA). In response to SLC2A3 RNAi (n = 6), the fetuses were hypoglycemic (p ≤ 0.05), exhibited reduced fetal growth, including reduced fetal pancreas weight (p ≤ 0.05), which was associated with reduced umbilical artery insulin and glucagon concentrations, when compared to the non-targeting sequence (NTS) RNAi controls (n = 6). By contrast, fetal liver weights were not impacted, nor were umbilical artery concentrations of IGF1, possibly resulting from a 70% increase (p ≤ 0.05) in umbilical vein chorionic somatomammotropin (CSH) concentrations. Thus, during the first half of gestation, a deficiency in SLC2A3 results in fetal hypoglycemia, reduced fetal development, and altered metabolic hormone concentrations. These results suggest that SLC2A3 may be the rate-limiting placental glucose transporter during the first-half of gestation in sheep.


Subject(s)
Hypoglycemia , Insulins , Humans , Pregnancy , Female , Sheep , Animals , Placental Lactogen/metabolism , Glucose Transporter Type 3/genetics , Glucagon/metabolism , Glucose Transporter Type 1/genetics , Placenta/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetal Weight , Glucose , Hypoglycemic Agents , Insulins/metabolism
7.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648127

ABSTRACT

The placenta facilitates the transport of nutrients to the fetus, removal of waste products from the fetus, immune protection of the fetus and functions as an endocrine organ, thereby determining the environment for fetal growth and development. Additionally, the placenta is a highly metabolic organ in itself, utilizing a majority of the oxygen and glucose derived from maternal circulation. Consequently, optimal placental function is required for the offspring to reach its genetic potential in utero. Among ruminants, pregnant sheep have been used extensively for investigating pregnancy physiology, in part due to the ability to place indwelling catheters within both maternal and fetal vessels, allowing for steady-state investigation of blood flow, nutrient uptakes and utilization, and hormone secretion, under non-stressed and non-anesthetized conditions. This methodology has been applied to both normal and compromised pregnancies. As such, our understanding of the in vivo physiology of pregnancy in sheep is unrivalled by any other species. However, until recently, a significant deficit existed in determining the specific function or significance of individual genes expressed by the placenta in ruminants. To that end, we developed and have been using in vivo RNA interference (RNAi) within the sheep placenta to examine the function and relative importance of genes involved in conceptus development (PRR15 and LIN28), placental nutrient transport (SLC2A1 and SLC2A3), and placenta-derived hormones (CSH). A lentiviral vector is used to generate virus that is stably integrated into the infected cell's genome, thereby expressing a short-hairpin RNA (shRNA), that when processed within the cell, combines with the RNA Induced Silencing Complex (RISC) resulting in specific mRNA degradation or translational blockage. To accomplish in vivo RNAi, day 9 hatched and fully expanded blastocysts are infected with the lentivirus for 4 to 5 h, and then surgically transferred to synchronized recipient uteri. Only the trophectoderm cells are infected by the replication deficient virus, leaving the inner cell mass unaltered, and we often obtain ~70% pregnancy rates following transfer of a single blastocyst. In vivo RNAi coupled with steady-state study of blood flow and nutrient uptake, transfer and utilization can now provide new insight into the physiological consequences of modifying the translation of specific genes expressed within the ruminant placenta.


Optimal placental function is required for offspring to reach their genetic potential in utero, and functional placental insufficiency not only results in increased offspring morbidity and mortality, but can impact production traits long-term. However, assessing placental function in vivo is technically demanding, and robust assessment of placental function requires cannulating both maternal and fetal vasculature in order to obtain arterial and venous blood samples simultaneously under non-stressed/non-anesthetized conditions. While feasible in cattle, this approach has been used more extensively in sheep, providing a thorough understanding of placental nutrient uptake, transport, and utilization in normal and compromised pregnancies. Previously, it has not been feasible to alter the abundance of specific gene products within the ruminant placenta, impairing the direct assessment of "cause and effect" relationships in vivo. However, recently methods have been developed to facilitate RNA interference (RNAi) within the placenta, effectively generating a deficiency in specific gene products, to examine the impact on pregnancy progression and outcome. While in vivo RNAi is feasible in a variety of species, in sheep it is being coupled with the aforementioned approaches assessing in vivo placental function, thereby providing new insight into the ramification of specific gene function within ruminant placenta.


Subject(s)
Fetal Development , Placenta , Animals , Female , Fetus/physiology , Pregnancy , Ruminants , Sheep , Uterus/blood supply
9.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360913

ABSTRACT

Deficiency of the placental hormone chorionic somatomammotropin (CSH) can lead to the development of intrauterine growth restriction (IUGR). To gain insight into the physiological consequences of CSH RNA interference (RNAi), the trophectoderm of hatched blastocysts (nine days of gestational age; dGA) was infected with a lentivirus expressing either a scrambled control or CSH-specific shRNA, prior to transfer into synchronized recipient sheep. At 90 dGA, umbilical hemodynamics and fetal measurements were assessed by Doppler ultrasonography. At 120 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies with the 3H2O transplacental diffusion technique at 130 dGA. Nutrient uptake rates were determined and tissues were subsequently harvested at necropsy. CSH RNAi reduced (p ≤ 0.05) both fetal and uterine weights as well as umbilical blood flow (mL/min). This ultimately resulted in reduced (p ≤ 0.01) umbilical IGF1 concentrations, as well as reduced umbilical nutrient uptakes (p ≤ 0.05) in CSH RNAi pregnancies. CSH RNAi also reduced (p ≤ 0.05) uterine nutrient uptakes as well as uteroplacental glucose utilization. These data suggest that CSH is necessary to facilitate adequate blood flow for the uptake of oxygen, oxidative substrates, and hormones essential to support fetal and uterine growth.


Subject(s)
Fetal Blood/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Hemodynamics/genetics , Nutrients/metabolism , Placental Lactogen/deficiency , Placental Lactogen/genetics , RNA Interference , Sheep/genetics , Signal Transduction/genetics , Animals , Blastocyst/metabolism , Female , Fetal Blood/diagnostic imaging , Fetal Growth Retardation/diagnostic imaging , Fetus/metabolism , Gestational Age , Glucose/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Placenta/metabolism , Pregnancy , RNA, Small Interfering/genetics , Ultrasonography, Doppler/methods , Uterus/metabolism
11.
PLoS One ; 15(7): e0235295, 2020.
Article in English | MEDLINE | ID: mdl-32687504

ABSTRACT

Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.


Subject(s)
Dermatitis, Atopic/genetics , Inflammation/genetics , Keratin-14/genetics , Nerve Tissue Proteins/genetics , S100 Calcium-Binding Protein A4/genetics , Animals , Apoptosis/genetics , Arthritis/genetics , Arthritis/pathology , Dermatitis, Atopic/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Immunoglobulin E/genetics , Inflammation/pathology , Integrases/genetics , Interleukin-18/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , NF-kappa B/genetics , Phenotype , Signal Transduction
12.
J Int Assoc Provid AIDS Care ; 19: 2325958220903574, 2020.
Article in English | MEDLINE | ID: mdl-32207355

ABSTRACT

Transitioning from pediatric to adult care is a complicated process for youth with chronic illnesses. This study elucidates the unique factors affecting transition preparedness and perception of adult HIV care among a cohort of young women with HIV. Between 2013 and 2015, 48 women with HIV, who had experience with pediatric HIV care, were enrolled in a large Canadian cohort study. Variables were self-reported during peer-administered surveys. Only 60% reported feeling prepared for transition. Having never had contact with child protection services (P = .049), never been in foster care (P = .011), never been in a group home (P = .036), reporting a higher current CD4 count (P = .033), and reporting a younger ideal age for transition (P = .041) were associated with transition preparedness. Eighty-four percent reported equivalent or better HIV care following transition. Correlates of equivalent/better care following transition included lower personal income (P = .023), higher CD4 count (P = .021), care by an adult infectious diseases specialist (P = .002), and transition preparedness (P = .005). Our findings highlight the importance of adequate transition preparation and its effect on perception of care following transition.


Subject(s)
HIV Infections/epidemiology , HIV Infections/therapy , Transition to Adult Care , Canada/epidemiology , Cohort Studies , Female , Humans , Longitudinal Studies , Surveys and Questionnaires , Young Adult
13.
Exp Dermatol ; 28(9): 1091-1093, 2019 09.
Article in English | MEDLINE | ID: mdl-31323149

ABSTRACT

2-deoxy D-glucose (2DG) was tested for efficacy in treating alopecia areata using the C3H/HeJ skin graft model. 2DG has proven to be efficacious in treatment of various mouse models of autoimmunity with minimal serious side effects noted. This agent has been shown to normalize abnormally activated T-cell populations while also preventing cell surface expression of NKG2D; key factors defining alopecia areata disease progression. Daily oral ingestion of 2DG via drinking water to mice with patchy or diffuse alopecia areata for 16 weeks failed to prevent expansion of alopecia or cause regrowth of hair in treated mice. Histologically, there were no differences between treated and control groups. These results indicate that, while 2DG is effective for some autoimmune diseases, it was not efficacious for the cell-mediated autoimmune mouse disease, alopecia areata.


Subject(s)
Alopecia Areata/drug therapy , Deoxyglucose/therapeutic use , Animals , Deoxyglucose/administration & dosage , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Hair Follicle/drug effects , Mice , Mice, Inbred C3H , Skin Transplantation , Treatment Failure
14.
Exp Mol Pathol ; 110: 104286, 2019 10.
Article in English | MEDLINE | ID: mdl-31323190

ABSTRACT

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/physiology , Gain of Function Mutation , Genes, Modifier , Guanylate Cyclase/genetics , Guanylate Kinases/physiology , Inflammation/genetics , Membrane Proteins/genetics , Psoriasis/genetics , Skin Diseases/genetics , Animals , Female , Gene Knock-In Techniques , Humans , Inflammation/pathology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Psoriasis/pathology , Severity of Illness Index , Skin Diseases/pathology , Transcriptome
15.
J Anim Sci ; 97(8): 3337-3347, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31181138

ABSTRACT

Objectives were to investigate the effects of supplementation with corn dried distiller's grains plus solubles (DDGS) to late gestating beef cows on arterial blood flow to the mammary glands during late gestation and early lactation; colostrum and milk production; dystocia and immunity; and calf BW. Cows were fed a control (CON; n = 15; 5.1% CP; 36.2% ADF) diet consisting of 90% corn stover and 10% corn silage on a dry basis offered ad libitum or CON diet with supplementation of DDGS (0.30% of BW; SUP n = 12). Mammary gland blood flow was assessed on day 245 of gestation. At parturition, maternal and calving parameters were assessed; colostrum and jugular blood was sampled; and dams were weighed. Mammary gland blood flow and milk production was measured on day 44 of lactation. Calves were weighed fortnightly for 8 wk and at weaning. Colostrum production tended to be greater in SUP dams than in CON dams (837 vs. 614 ± 95 g, P = 0.10). Calves of SUP dams were heavier at birth and 24 h (0 h, 43.2 vs. 39.8 ± 1.0 kg, P = 0.02; 24 h, 44.0 vs. 40.4 ± 1.1 kg, P = 0.02). At birth and 24 h, blood pCO2 was greater in calves born to SUP dams (6.82 vs. 6.00 ± 0.41 kPa, P = 0.04). Serum IgG did not differ (P = 0.21) at 24 h. Ipsilateral mammary gland blood flow of SUP cows was greater than CON cows (2.76 vs. 1.76 ± 0.30 L/min; P = 0.03); however, when summed with contralateral, total blood flow was similar (P = 0.33). Hemodynamic measures on day 44 of lactation were similar (P ≥ 0.32). Milk production tended to be increased (13.5 vs. 10.2 ± 1.2 kg/d, P = 0.07) in SUP vs. CON cows. Despite similar BW through 56 d, calves from SUP cows were heavier (P = 0.04) at weaning (309.7 vs. 292.0 ± 6.0 kg). In conclusion, we accept our hypothesis that DDGS supplementation during gestation influenced mammary blood flow, milk production and calf weights. These findings implicate maternal nutrition's leverage on both nutrient and passive immunity delivery to the calf early in life as well as potential advantages on long-term performance.


Subject(s)
Cattle/physiology , Colostrum/metabolism , Dietary Supplements , Milk/metabolism , Animal Feed , Animals , Body Weight , Cattle/blood , Diet/veterinary , Female , Hemodynamics , Humans , Lactation , Mammary Glands, Animal/blood supply , Maternal Nutritional Physiological Phenomena , Parturition , Pregnancy , Silage , Weaning , Zea mays
16.
Vet Pathol ; 56(5): 799-806, 2019 09.
Article in English | MEDLINE | ID: mdl-31060453

ABSTRACT

During a screen for vascular phenotypes in aged laboratory mice, a unique discrete phenotype of hyaline arteriolosclerosis of the intertubular arteries and arterioles of the testes was identified in several inbred strains. Lesions were limited to the testes and did not occur as part of any renal, systemic, or pulmonary arteriopathy or vasculitis phenotype. There was no evidence of systemic or pulmonary hypertension, and lesions did not occur in ovaries of females. Frequency was highest in males of the SM/J (27/30, 90%) and WSB/EiJ (19/26, 73%) strains, aged 383 to 847 days. Lesions were sporadically present in males from several other inbred strains at a much lower (<20%) frequency. The risk of testicular hyaline arteriolosclerosis is at least partially underpinned by a genetic predisposition that is not associated with other vascular lesions (including vasculitis), separating out the etiology of this form and site of arteriolosclerosis from other related conditions that often co-occur in other strains of mice and in humans. Because of their genetic uniformity and controlled dietary and environmental conditions, mice are an excellent model to dissect the pathogenesis of human disease conditions. In this study, a discrete genetically driven phenotype of testicular hyaline arteriolosclerosis in aging mice was identified. These observations open the possibility of identifying the underlying genetic variant(s) associated with the predisposition and therefore allowing future interrogation of the pathogenesis of this condition.


Subject(s)
Aging , Arteriosclerosis/veterinary , Hyalin/metabolism , Rodent Diseases/pathology , Testicular Diseases/veterinary , Animals , Arteriosclerosis/genetics , Arteriosclerosis/pathology , Female , Genetic Predisposition to Disease , Male , Mice , Mice, Inbred Strains , Rodent Diseases/genetics , Testicular Diseases/genetics , Testicular Diseases/pathology , Testis/pathology
17.
Exp Dermatol ; 28(4): 383-390, 2019 04.
Article in English | MEDLINE | ID: mdl-30074290

ABSTRACT

In a large-scale ageing study, 30 inbred mouse strains were systematically screened for histologic evidence of lesions in all organ systems. Ten strains were diagnosed with similar nail abnormalities. The highest frequency was noted in NON/ShiLtJ mice. Lesions identified fell into two main categories: acute to chronic penetration of the third phalangeal bone through the hyponychium with associated inflammation and bone remodelling or metaplasia of the nail matrix and nail bed associated with severe orthokeratotic hyperkeratosis replacing the nail plate. Penetration of the distal phalanx through the hyponychium appeared to be the initiating feature resulting in nail abnormalities. The accompanying acute to subacute inflammatory response was associated with osteolysis of the distal phalanx. Evaluation of young NON/ShiLtJ mice revealed that these lesions were not often found, or affected only one digit. The only other nail unit abnormality identified was sporadic subungual epidermoid inclusion cysts which closely resembled similar lesions in human patients. These abnormalities, being age-related developments, may have contributed to weight loss due to impacts upon feeding and should be a consideration for future research due to the potential to interact with other experimental factors in ageing studies using the affected strains of mice.


Subject(s)
Aging/pathology , Nails, Malformed/pathology , Toe Phalanges/pathology , Animals , Bone Remodeling , Cross-Sectional Studies , Epidermal Cyst/complications , Female , Inflammation/etiology , Keratin-1/metabolism , Keratin-10/metabolism , Keratosis/etiology , Longitudinal Studies , Male , Metaplasia/pathology , Mice , Mice, Inbred Strains , Nails, Malformed/etiology , Nails, Malformed/metabolism
18.
PLoS One ; 13(10): e0205775, 2018.
Article in English | MEDLINE | ID: mdl-30372477

ABSTRACT

In a large scale screen for skin, hair, and nail abnormalities in null mice generated by The Jackson Laboratory's KOMP center, homozygous mutant Far2tm2b(KOMP)Wtsi/2J (hereafter referrred to as Far2-/-) mice were found to develop focal areas of alopecia as they aged. As sebocytes matured in wildtype C57BL/NJ mice they became pale with fine, uniformly sized clear lipid containing vacuoles that were released when sebocytes disintegrated in the duct. By contrast, the Far2-/- null mice had sebocytes that were similar within the gland but become brightly eosinophilic when the cells entered the sebaceous gland duct. As sebocytes disintegrated, their contents did not readily dissipate. Scattered throughout the dermis, and often at the dermal hypodermal fat junction, were dystrophic hair follicles or ruptured follicles with a foreign body granulomatous reaction surrounding free hair shafts (trichogranuloma). The Meibomian and clitoral glands (modified sebaceous glands) of Far2-/- mice showed ducts dilated to various degrees that were associated with mild changes in the sebocytes as seen in the truncal skin. Skin surface lipidomic analysis revealed a lower level of wax esters, cholesterol esters, ceramides, and diacylglycerols compared to wildtype control mice. Similar changes were described in a number of other mouse mutations that affected the sebaceous glands resulting in primary cicatricial alopecia.


Subject(s)
Aldehyde Oxidoreductases/genetics , Alopecia/genetics , Cicatrix/genetics , Hair Follicle/pathology , Sebaceous Glands/pathology , Alopecia/pathology , Animals , Cicatrix/pathology , Disease Models, Animal , Female , Humans , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sebaceous Glands/cytology
20.
PLoS One ; 12(7): e0180682, 2017.
Article in English | MEDLINE | ID: mdl-28700664

ABSTRACT

The International Knockout Mouse Consortium was formed in 2007 to inactivate ("knockout") all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg)-Far2tm2b(KOMP)Wtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg)-Ppp1r9btm1.1(KOMP)Vlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.


Subject(s)
Hair/abnormalities , Nails, Malformed/genetics , Skin Abnormalities/genetics , Animals , Mice, Inbred C57BL , Mice, Knockout , Sebaceous Glands/pathology , Skin/pathology , Vibrissae/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...