Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 3907, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162861

ABSTRACT

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Homoharringtonine/pharmacology , Piperidines/pharmacology , Quinazolinones/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , High-Throughput Screening Assays/methods , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Protein Synthesis Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
2.
Res Sq ; 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-34013250

ABSTRACT

The endo-lysosomal pathway plays an important role in pathogen clearance and both bacteria and viruses have evolved complex mechanisms to evade this host system. Here, we describe a novel aspect of coronaviral infection, whereby the master transcriptional regulator of lysosome biogenesis - TFEB - is targeted for proteasomal-mediated degradation upon viral infection. Through mass spectrometry analysis and an unbiased siRNA screen, we identify that TFEB protein stability is coordinately regulated by the E3 ubiquitin ligase subunit DCAF7 and the PAK2 kinase. In particular, viral infection triggers marked PAK2 activation, which in turn, phosphorylates and primes TFEB for ubiquitin-mediated protein degradation. Deletion of either DCAF7 or PAK2 blocks viral-mediated TFEB degradation and protects against viral-induced cytopathic effects. We further derive a series of small molecules that interfere with the DCAF7-TFEB interaction. These agents inhibit viral-triggered TFEB degradation and demonstrate broad anti-viral activities including attenuating in vivo SARS-CoV-2 infection. Together, these results delineate a viral-triggered pathway that disables the endogenous cellular system that maintains lysosomal function and suggest that small molecule inhibitors of the E3 ubiquitin ligase DCAF7 represent a novel class of endo-lysosomal, host-directed, anti-viral therapies.

3.
Nat Chem Biol ; 17(3): 298-306, 2021 03.
Article in English | MEDLINE | ID: mdl-33495648

ABSTRACT

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-ß-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.


Subject(s)
AMP-Activated Protein Kinases/genetics , Hypoglycemic Agents/pharmacology , Obesity/drug therapy , Proteasome Endopeptidase Complex/drug effects , Protein Processing, Post-Translational/drug effects , Ubiquitin-Protein Ligases/genetics , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Transformed , Diet, High-Fat , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , F-Box Proteins , Humans , Hypoglycemic Agents/chemical synthesis , Insulin Resistance , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Dynamics/drug effects , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Phosphorylation , Polyubiquitin/genetics , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Stability/drug effects , Proteolysis/drug effects , Ribonucleotides/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Res Sq ; 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32818215

ABSTRACT

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds. Among these, homoharringtonine and halofuginone appear the most potent agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrated marked resistance to SARS-CoV-2 pseudoviral infection. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat COVID-19 infection.

5.
Redox Biol ; 32: 101485, 2020 05.
Article in English | MEDLINE | ID: mdl-32171724

ABSTRACT

NRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation. KEAP1-independent mechanisms regulating NRF2 stability have also been reported. Here we employed an HTS approach and identified a small molecule, BC-1901S, that stabilized NRF2 and increased its activity. BC-1901S activated NRF2 by inhibiting NRF2 ubiquitination in a KEAP1-independent manner. It further increased NRF2-dependent anti-oxidant gene transcription, and exhibited anti-inflammatory effects in vitro and in vivo. Further, we identified a new NRF2-interacting partner, DDB1 and CUL4 Associated Factor 1 (DCAF1), an E3 ligase that targeted NRF2 for proteasomal degradation. Mechanistically, BC-1901S directly bound to DCAF1 and disrupted NRF2/DCAF1 interaction, thus activating NRF2. These findings provide new insights in NRF2 biology and NRF2 based anti-inflammatory therapy.


Subject(s)
NF-E2-Related Factor 2 , Ubiquitin-Protein Ligases , Humans , Inflammation/drug therapy , Inflammation/genetics , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
6.
J Biol Chem ; 295(13): 4171-4180, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32071084

ABSTRACT

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor ß (TGF-ß) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-ß signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-ß signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-ß signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-ß-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-ß-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-ß-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.


Subject(s)
Protein Phosphatase 2/genetics , Scleroderma, Systemic/genetics , Smad2 Protein/genetics , Transforming Growth Factor beta/genetics , Ubiquitin-Protein Ligases/genetics , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Lung/cytology , Lung/metabolism , Proteolysis , Proteomics , Scleroderma, Systemic/pathology , Signal Transduction/genetics
7.
Nat Commun ; 10(1): 555, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696825

ABSTRACT

The original version of this Article contained an error in the author affiliations. The affiliation of Alice Chen-Plotkin with the Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104 USA was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 4188, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305625

ABSTRACT

Aging is a prominent risk factor for neurodegenerative disease. Defining gene expression mechanisms affecting healthy brain aging should lead to insight into genes that modulate susceptibility to disease. To define such mechanisms, we have pursued analysis of miR-34 mutants in Drosophila. The miR-34 mutant brain displays a gene expression profile of accelerated aging, and miR-34 upregulation is a potent suppressor of polyglutamine-induced neurodegeneration. We demonstrate that Pcl and Su(z)12, two components of polycomb repressive complex 2, (PRC2), are targets of miR-34, with implications for age-associated processes. Because PRC2 confers the repressive H3K27me3 mark, we hypothesize that miR-34 modulates PRC2 activity to relieve silencing of genes promoting healthful aging. Gene expression profiling of the brains of hypomorphic mutants in Enhancer of zeste (E(z)), the enzymatic methyltransferase component of PRC2, revealed a younger brain transcriptome profile and identified the small heat shock proteins as key genes reduced in expression with age.


Subject(s)
Aging/metabolism , Brain/metabolism , Drosophila melanogaster/genetics , MicroRNAs/metabolism , Molecular Chaperones/metabolism , Polycomb Repressive Complex 2/metabolism , 3' Untranslated Regions/genetics , Animals , Base Sequence , Drosophila Proteins/metabolism , Gene Expression Profiling , Histones/metabolism , Lysine/metabolism , Methylation , MicroRNAs/genetics , Models, Biological , Mutation/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Peptides/toxicity , Polycomb Repressive Complex 2/genetics , Protein Aggregates , Transcriptome/genetics
9.
Nat Commun ; 9(1): 4406, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353006

ABSTRACT

TDP-43 is the major disease protein associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-TDP). Here we identify the transcriptional elongation factor Ell-a shared component of little elongation complex (LEC) and super elongation complex (SEC)-as a strong modifier of TDP-43-mediated neurodegeneration. Our data indicate select targets of LEC and SEC become upregulated in the fly ALS/FTLD-TDP model. Among them, U12 snRNA and a stress-induced long non-coding RNA Hsrω, functionally contribute to TDP-43-mediated degeneration. We extend the findings of Hsrω, which we identify as a chromosomal target of TDP-43, to show that the human orthologue Sat III is elevated in a human cellular disease model and FTLD-TDP patient tissue. We further demonstrate an interaction between TDP-43 and human ELL2 by co-immunoprecipitation from human cells. These findings reveal important roles of Ell-complexes LEC and SEC in TDP-43-associated toxicity, providing potential therapeutic insight for TDP-43-associated neurodegeneration.


Subject(s)
DNA-Binding Proteins/toxicity , RNA, Untranslated/genetics , Transcription Elongation, Genetic , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Genetic Loci , HEK293 Cells , Humans , Male , Models, Biological , Nuclear Proteins/metabolism , Polytene Chromosomes/metabolism , Protein Binding , RNA, Small Nuclear/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism
10.
Nature ; 482(7386): 519-23, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22343898

ABSTRACT

Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.


Subject(s)
Aging/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Gene Expression Regulation/genetics , MicroRNAs/genetics , Neurodegenerative Diseases/genetics , Animals , Brain/metabolism , Brain/pathology , Down-Regulation , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Female , Hot Temperature , Humans , Longevity/genetics , Male , Mutation , Neurodegenerative Diseases/pathology , Protein Biosynthesis , RNA, Messenger/analysis , RNA, Messenger/genetics , Survival Analysis , Time Factors , Transcription Factors/biosynthesis , Transcription Factors/genetics , Up-Regulation
11.
Development ; 136(22): 3801-10, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19855022

ABSTRACT

Wnt signaling through Frizzled proteins guides posterior cells and axons in C. elegans into different spatial domains. Here we demonstrate an essential role for Wnt signaling through Ror tyrosine kinase homologs in the most prominent anterior neuropil, the nerve ring. A genetic screen uncovered cwn-2, the C. elegans homolog of Wnt5, as a regulator of nerve ring placement. In cwn-2 mutants, all neuronal structures in and around the nerve ring are shifted to an abnormal anterior position. cwn-2 is required at the time of nerve ring formation; it is expressed by cells posterior of the nerve ring, but its precise site of expression is not critical for its function. In nerve ring development, cwn-2 acts primarily through the Wnt receptor CAM-1 (Ror), together with the Frizzled protein MIG-1, with parallel roles for the Frizzled protein CFZ-2. The identification of CAM-1 as a CWN-2 receptor contrasts with CAM-1 action as a non-receptor in other C. elegans Wnt pathways. Cell-specific rescue of cam-1 and cell ablation experiments reveal a crucial role for the SIA and SIB neurons in positioning the nerve ring, linking Wnt signaling to specific cells that organize the anterior nervous system.


Subject(s)
Axons/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Neurogenesis , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Wnt Proteins/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt Proteins/genetics
12.
Genes Dev ; 16(15): 1884-9, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12154120

ABSTRACT

Gene silencing by double-stranded RNA is a widespread phenomenon called RNAi, involving homology-dependent degradation of mRNAs. Here we show that RNAi is established in the Drosophila female germ line. mRNA transcripts are translationally quiescent at the arrested oocyte stage and are insensitive to RNAi. Upon oocyte maturation, transcripts that are translated become sensitive to degradation while untranslated transcripts remain resistant. Mutations in aubergine and spindle-E, members of the PIWI/PAZ and DE-H helicase gene families, respectively, block RNAi activation during egg maturation and perturb translation control during oogenesis, supporting a connection between gene silencing and translation in the oocyte.


Subject(s)
Adenosine Triphosphatases , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Silencing/physiology , Oocytes/metabolism , Oogenesis/genetics , Peptide Initiation Factors/physiology , RNA Helicases/physiology , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Female , Microinjections , Peptide Initiation Factors/genetics , Protein Biosynthesis , Protein Structure, Tertiary , RNA Helicases/genetics , RNA, Double-Stranded/administration & dosage , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/pharmacology , RNA, Messenger/genetics , RNA, Small Interfering , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...