Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Methods ; 2(2): 100165, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35474965

ABSTRACT

Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.


Subject(s)
Fluorescence Resonance Energy Transfer , Single Molecule Imaging , Single Molecule Imaging/methods , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer/methods , Proteins/chemistry , Fluorescent Dyes/chemistry
2.
Nat Commun ; 8: 15976, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28706306

ABSTRACT

The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.


Subject(s)
Cell Membrane/metabolism , Receptors, Interleukin-4, Type II/metabolism , Actin Cytoskeleton , Cell Compartmentation , Dimerization , HeLa Cells , Humans , Ligands , Receptors, Interleukin-4, Type II/agonists , STAT6 Transcription Factor/metabolism
3.
EMBO J ; 27(5): 782-91, 2008 Mar 05.
Article in English | MEDLINE | ID: mdl-18239688

ABSTRACT

Water oxidation in photosystem II (PSII) is still insufficiently understood and is assumed to involve HCO(3)(-). A Chlamydomonas mutant lacking a carbonic anhydrase associated with the PSII donor side shows impaired O(2) evolution in the absence of HCO(3)(-). The O(2) evolution for saturating, continuous illumination (R(O2)) was slower than in the wild type, but was elevated by HCO(3)(-) and increased further by Cah3. The R(O2) limitation in the absence of Cah3/HCO(3)(-) was amplified by H(2)O/D(2)O exchange, but relieved by an amphiphilic proton carrier, suggesting a role of Cah3/HCO(3)(-) in proton translocation. Chlorophyll fluorescence indicates a Cah3/HCO(3)(-) effect at the donor side of PSII. Time-resolved delayed fluorescence and O(2)-release measurements suggest specific effects on proton-release steps but not on electron transfer. We propose that Cah3 promotes proton removal from the Mn complex by locally providing HCO(3)(-), which may function as proton carrier. Without Cah3, proton removal could become rate limiting during O(2) formation and thus, limit water oxidation under high light. Our results underlie the general importance of proton release at the donor side of PSII during water oxidation.


Subject(s)
Carbonic Anhydrases/metabolism , Chlamydomonas reinhardtii/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Animals , Bicarbonates/metabolism , Carbonic Anhydrases/genetics , Chlorophyll/metabolism , Mutation , Protons , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...