Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Res Princ Implic ; 7(1): 22, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35254563

ABSTRACT

We used a driving simulator to investigate landmark-based route navigation in young adults. Previous research has examined how proximal and distal landmarks influence route navigation, however, these effects have not been extensively tested in ecologically-relevant settings. We used a virtual town in which participants learned various routes while simultaneously driving. We first examined the effect of four different landmark conditions on navigation performance, such that each driver experienced one of four versions of the town with either proximal landmarks only, distal landmarks only, both proximal and distal landmarks, or no landmarks. Drivers were given real-time navigation directions along a route to a target destination, and were then tested on their ability to navigate to the same destination without directions. We found that the presence of proximal landmarks significantly improved route navigation. We then examined the effect of prior exposure to proximal vs. distal landmarks by testing the same drivers in the same environment they previously encountered, but with the landmarks removed. In this case, we found that prior exposure to distal landmarks significantly improved route navigation. The present results are in line with existing research on route navigation and landmarks, suggesting that these findings can be extended to ecologically-relevant settings.


Subject(s)
Automobile Driving , Humans , Learning , Young Adult
2.
Neurobiol Aging ; 104: 71-81, 2021 08.
Article in English | MEDLINE | ID: mdl-33975121

ABSTRACT

Aging is associated with a gradual decline in the sensory systems and noisier sensory information. Some research has found that older adults compensate for this with enhanced multisensory integration. However, less is known about how aging influences visual-vestibular integration, an ability that underlies self-motion perception. We examined how visual-vestibular integration changes in participants from across the lifespan (18-79 years old) with a simple reaction time task. Participants were instructed to respond to visual (optic flow) and vestibular (inertial motion) acceleration cues, presented either alone or at a stimulus onset asynchrony. We measured reaction times and computed the violation area relative to the race model inequality as a measure of visual-vestibular integration. Across all ages, the greatest visual-vestibular integration occurred when the vestibular cue was presented first. Age was associated with longer reaction times and a significantly lower detection rate in the vestibular-only condition, a finding that is consistent with an age-related increase in vestibular noise. Although the relationship between age and visual-vestibular integration was positive, the effect size was very small and did not reach statistical significance. Our results suggest that although age is associated with a significant increase in vestibular perceptual threshold, the relative amount of visual-vestibular integration remains largely intact.


Subject(s)
Healthy Aging/physiology , Healthy Aging/psychology , Motion Perception , Optic Flow/physiology , Vestibule, Labyrinth/pathology , Acceleration , Adolescent , Adult , Aged , Cues , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychomotor Performance , Reaction Time , Young Adult
3.
Mem Cognit ; 49(8): 1633-1644, 2021 11.
Article in English | MEDLINE | ID: mdl-34018119

ABSTRACT

It is well established that humans use self-motion and landmark cues to successfully navigate their environment. Existing research has demonstrated a critical role of the vestibular system in supporting navigation across many species. However, less is known about how vestibular cues interact with landmarks to promote successful navigation in humans. In the present study, we used a motion simulator to manipulate the presence or absence of vestibular cues during a virtual navigation task. Participants learned routes to a target destination in three different landmark blocks in a virtual town: one with proximal landmarks, one with distal landmarks, and one with no landmarks present. Afterwards, they were tested on their ability to retrace the route and find the target destination. We observed a significant interaction between vestibular cues and proximal landmarks, demonstrating that the potential for vestibular cues to improve route navigation is dependent on landmarks that are present in the environment. In particular, vestibular cues significantly improved route navigation when proximal landmarks were present, but this was not significant when distal landmarks or no landmarks were present. Overall, our results indicate that landmarks play an important role in the successful incorporation of vestibular cues to human spatial navigation.


Subject(s)
Cues , Spatial Navigation , Humans , Space Perception , Vestibular System
4.
Exp Brain Res ; 238(6): 1423-1432, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32367145

ABSTRACT

Self-motion perception is based on the integration of visual (optic flow) and vestibular (inertial) sensory information. Previous research has shown that the relative contribution of visual and vestibular cues can change in real time based on the reliability of that information. The present study assessed whether initial velocity and acceleration magnitude influence the relative contribution of these cues to the detection of self-acceleration. Participants performed a simple response time task with visual and vestibular self-acceleration cues as targets. Visual optic flow was presented at three possible initial velocities of 3, 9, or 15 m/s, and accelerated to result in three possible final velocities of 21, 27, or 33 m/s. Corresponding vestibular cues were presented at magnitudes between 0.01 and 0.04 g. The self-acceleration cues were presented at three possible stimulus onset asynchronies (SOAs): visual-first (by 100 ms), in-sync, and vestibular-first (by 100 ms). We found that presenting the cues in-sync resulted in the fastest responses across all velocities and acceleration magnitudes. Interestingly, presenting the visual cue first resulted in a relative advantage over vestibular-first at the slowest initial velocity of 3 m/s, and vice versa for the fastest initial velocity of 15 m/s. The fastest overall responses for visual-first and in-sync were observed at 9 m/s. The present results support the hypothesis that velocity of optic flow can alter the relative contribution of visual and vestibular cues to the detection of self-acceleration.


Subject(s)
Cues , Movement/physiology , Optic Flow/physiology , Proprioception/physiology , Psychomotor Performance/physiology , Acceleration , Adolescent , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...