Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (113)2016 07 19.
Article in English | MEDLINE | ID: mdl-27501355

ABSTRACT

The design and operation of a simple liquid nitrogen Dewar/cryostat apparatus based upon a small fused silica optical Dewar, a thermocouple assembly, and a CCD spectrograph are described. The experiments for which this Dewar/cryostat is designed require fast sample loading, fast sample freezing, fast alignment of the sample, accurate and stable sample temperatures, and small size and portability of the Dewar/cryostat cryogenic unit. When coupled with the fast data acquisition rates of the CCD spectrograph, this Dewar/cryostat is capable of supporting cryogenic luminescence spectroscopic measurements on luminescent samples at a series of known, stable temperatures in the 77-300 K range. A temperature-dependent study of the oxygen quenching of luminescence in a rhodium(III) transition metal complex is presented as an example of the type of investigation possible with this Dewar/cryostat. In the context of this apparatus, a stable temperature for cryogenic spectroscopy means a luminescent sample that is thermally equilibrated with either liquid nitrogen or gaseous nitrogen at a known measureable temperature that does not vary (ΔT < 0.1 K) during the short time scale (~1-10 sec) of the spectroscopic measurement by the CCD. The Dewar/cryostat works by taking advantage of the positive thermal gradient dT/dh that develops above liquid nitrogen level in the Dewar where h is the height of the sample above the liquid nitrogen level. The slow evaporation of the liquid nitrogen results in a slow increase in h over several hours and a consequent slow increase in the sample temperature T over this time period. A quickly acquired luminescence spectrum effectively catches the sample at a constant, thermally equilibrated temperature.


Subject(s)
Freezing , Luminescent Measurements/methods , Spectrum Analysis , Cold Temperature , Nitrogen
2.
J Phys Chem A ; 109(50): 11453-61, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16354035

ABSTRACT

The moment analysis method (MA) has been tested for the case of 2S --> 2P ([core]ns1 --> [core]np1) transitions of alkali metal atoms (M) doped into cryogenic rare gas (Rg) matrices using theoretically validated simulations. Theoretical/computational M/Rg system models are constructed with precisely defined parameters that closely mimic known M/Rg systems. Monte Carlo (MC) techniques are then employed to generate simulated absorption and magnetic circular dichroism (MCD) spectra of the 2S --> 2P M/Rg transition to which the MA method can be applied with the goal of seeing how effective the MA method is in re-extracting the M/Rg system parameters from these known simulated systems. The MA method is summarized in general, and an assessment is made of the use of the MA method in the rigid shift approximation typically used to evaluate M/Rg systems. The MC-MCD simulation technique is summarized, and validating evidence is presented. The simulation results and the assumptions used in applying MA to M/Rg systems are evaluated. The simulation results on Na/Ar demonstrate that the MA method does successfully re-extract the 2P spin-orbit coupling constant and Landé g-factor values initially used to build the simulations. However, assigning physical significance to the cubic and noncubic Jahn-Teller (JT) vibrational mode parameters in cryogenic M/Rg systems is not supported.

3.
J Am Chem Soc ; 125(18): 5461-70, 2003 May 07.
Article in English | MEDLINE | ID: mdl-12720460

ABSTRACT

The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 59(2): 309-19, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12685905

ABSTRACT

The effects of hydrostatic pressure upon (1) a segmented poly (ester urethane), (2) a hydrolytically degraded sample of the same polymer, and (3) models for the polyurethane and polyester segments in this polymer have been studied by Fourier transform infrared spectroscopy using high-pressure diamond anvil cells (DACs). The pressure responses of the vibrational frequencies of specific functional groups of the poly (ester urethane) in the 0-100-kbar range are compared with data for individual segment models and the partially degraded sample. The results indicated that the polymer is highly stable in this pressure regime, with no measurable degradation or phase changes. Differences in the pressure dependency of specific infrared bands between the poly (ester urethane) sample and the partially degraded sample are slight and consistent with changes in hydrogen-bonding interactions and shorter chain lengths in the degraded sample.


Subject(s)
Polyesters/chemistry , Polyurethanes/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Diamond , Models, Chemical , Polyesters/analysis , Polyurethanes/analysis , Pressure , Temperature , Water/chemistry
5.
Environ Sci Technol ; 36(11): 2451-8, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12075803

ABSTRACT

The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using the relative intensities of the Al-O stretching bands from the Raman spectra. A constant apparent log Kdimer value was obtained at aluminate concentrations >1.5 M with a value of 0.97+/-0.04 at approximately 25 degrees C. This study represents the first spectral-based estimation of a thermodynamic equilibrium constant for the Al2O3-Na2O-H2O system.


Subject(s)
Aluminum/chemistry , Radioactive Waste , Water Pollutants, Radioactive/analysis , Aluminum/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Thermodynamics
6.
Inorg Chem ; 35(4): 883-892, 1996 Feb 14.
Article in English | MEDLINE | ID: mdl-11666261

ABSTRACT

The complexes M(3)[Pt(SnX(3))(5)] (M = Bu(4)N(+), PhCH(2)PPh(3)(+); X = Cl, Br), cis-M(2)[PtX(2)(SnX(3))(2)] (M = Bu(4)N(+), PhCH(2)PPh(3)(+), CH(3)PPh(3)(+), Pr(4)N(+); X = Cl, Br), and [PhCH(2)PPh(3)](2)[PtBr(3)(SnBr(3))] have been prepared and characterized by (119)Sn and (195)Pt NMR, far-infrared, and electronic absorption and emission spectroscopies. In acetone solutions the [Pt(SnX(3))(5)](3)(-) ions retain their trigonal bipyramidal structures but are stereochemically nonrigid as evidenced by (119)Sn and (195)Pt NMR spectroscopy. For [Pt(SnCl(3))(5)](3)(-) spin correlation is preserved between 183 and 363 K establishing that the nonrigidity is due to intramolecular tin site exchange, probably via Berry pseudorotation. Whereas, [Pt(SnCl(3))(5)](3)(-) does not undergo loss of SnCl(3)(-) or SnCl(2) to form either [Pt(SnCl(3))(4)](2)(-) or [PtCl(2)(SnCl(3))(2)](2)(-), [Pt(SnBr(3))(5)](3)(-) is not stable in acetone solution in the absence of excess SnBr(2) and forms [PtBr(2)(SnBr(3))(2)](2)(-) and [PtBr(3)(SnBr(3))](2)(-) by loss of SnBr(2). Similarly, [PtCl(2)(SnCl(3))(2)](2)(-) is stable in acetone at ambient temperatures but disproportionates at elevated temperatures and [PtBr(2)(SnBr(3))(2)](2)(-) loses SnBr(2) in acetone to form [PtBr(3)(SnBr(3))](2)(-). The crystal structures of methyltriphenylphosphonium cis-dibromobis(tribromostannyl)platinate(II) and benzyltriphenylphosphonium tribromo(tribromostannyl)platinate(II) have been determined. Both compounds crystallize in the triclinic space group P&onemacr; in unit cells with a = 12.293(16) Å, b = 12.868(6) Å, c = 25.047(8) Å, alpha = 96.11(3) degrees, beta = 91.06(3) degrees, gamma = 116.53(3) degrees, rho(calc) = 2.30 g cm(-)(3), Z = 3 and with a = 11.046(7) Å, b = 14.164(9) Å, c = 22.549(10) Å, alpha = 89.44(4) degrees, beta = 83.32(5) degrees, gamma = 68.31(5) degrees, rho(calc) = 1.893 g cm(-)(3), Z = 2, respectively. Least-squares refinements converged at R = 0.057 and 0.099 for 4048 and 4666 independent observed reflections with I/sigma(I) > 3.0 and I/sigma(I) > 2.0, respectively. For the former, the asymmetric unit contains 1.5 cis-[PtBr(2)(SnBr(3))(2)](2)(-) ions, 0.5 of which is disordered in such a way as to be pseudocentrosymmetric. This disordering involves a half-occupied PtBr(2) unit appearing on either side of the center. Simultaneously, one bromine from each SnBr(3) ligand changes sides while the other two bromines appear in average positions with very small displacements between their positions. The Pt-Sn distance in [PtBr(3)(SnBr(3))](2)(-) (2.486(3) Å) is slightly shorter than that incis-[PtBr(2)(SnBr(3))(2)](2)(-) (2.4955(3) Å, average), and both are significantly longer than that previously found in cis-[PtCl(2)(SnCl(3))(2)](2)(-) (2.3556 Å, average), which is not consistent with the relative magnitudes of the (1)J((195)Pt-(119)Sn) coupling constants (28 487, 25 720, and 27 627 Hz, respectively). From our electronic absorption and emission studies of the Pt-SnX(3)(-) complexes, we conclude that (a) the low-energy transitions are d-d transitions analogous to those found in [PtX(4)](2)(-) systems, (b) the SnCl(3)(-) ligand is a stronger sigma donor than SnBr(3)(-), (c) the triplet state from which the emission occurs is split by spin-orbit coupling into different spin-orbit states, (d) a forbidden spin-orbit state must lie at or near the bottom of the spin-orbit manifold, (e) the solid state crystal environment perturbs the platinum-tin halide electronic states, and (f) dispersion of the samples in solvents changes this perturbation, which can be rationalized in terms of an in-plane distortion of the square planar platinum coordination sphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...