Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 56(3): 1736-1742, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35034441

ABSTRACT

Lead and mercury have long histories of anthropogenic use and release to the environment extending into preindustrial times. Yet, the timing, magnitude, and persistence of preindustrial emissions remain enigmatic, especially for mercury. Here, we quantify tropical lead and mercury deposition over the past ∼3000 years using a well-dated sediment core from a small crater lake (Lake Antoine, Grenada). Preindustrial increases in lead and mercury concentrations can be explained by varying inputs of watershed mineral and organic matter, which in turn reflect climate-driven changes in the lake level. We find no evidence that preindustrial lead and mercury use raised deposition rates in this remote ecosystem, and our results underscore the need to carefully evaluate common normalization approaches for changing lithogenic inputs and sedimentation rates. Industrial-era lead and mercury accumulation rates in Lake Antoine have been accelerated by land use and land cover change within the crater rim, yet global industrial pollution remains evident. After correcting for watershed inputs, we find that recent atmospheric lead and mercury deposition rates averaged 2925 and 24 µg/m2/y, respectively, which are in close agreement with monitoring data. Our results challenge recent assessments suggesting preindustrial mercury use raised atmospheric deposition rates globally, highlighting the unique nature of 20th Century industrial pollution.


Subject(s)
Mercury , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Geologic Sediments , Lakes , Mercury/analysis , Water Pollutants, Chemical/analysis
2.
Mar Environ Res ; 171: 105477, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34520892

ABSTRACT

We investigated stratigraphic changes in mollusk death assemblages and geochemistry in sediment cores from four seagrass beds and one unvegetated site in the Gulf of Guanahacabibes (GG), NW Cuba. There was a transition from mangrove to seagrass beds, associated with sea level rise ∼6000 years ago. Sediment accumulation rates during the last century showed a general rise, but increased sharply after ∼1980, likely because of human activities. The GG displayed overall high mollusk γ-diversity, and our estimate of 189 species is biased toward the low end. High ß-diversity was driven by inter-site differences in grain size, vegetation cover, and nutrient input. Spatial heterogeneity within the basin influenced downcore abundance and diversity metrics, highlighting the influence of local drivers. Herbivorous gastropods dominated in seagrass beds and suspension feeder bivalves were dominant on sandy bottom. In the top parts of cores, species richness declined at two sites that were subject to high, human-mediated bulk sedimentation rates and eutrophication. Conservation measures are needed to preserve this hotspot of marine diversity.


Subject(s)
Biodiversity , Lead , Animals , Cuba , Geologic Sediments , Humans , Mollusca
3.
J Environ Sci (China) ; 96: 117-126, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32819686

ABSTRACT

Sediments in Lake Izabal, Guatemala, contain substantial lead (Pb), zinc (Zn), and nickel (Ni). The lack of historical data for heavy metal concentrations in the sediments makes it difficult to determine the sources or evaluate whether inputs of metals to the lake have changed through time. We measured the relative abundances and concentrations of Pb, Zn, and Ni by X-Ray Fluorescence core scanning and by Inductively Coupled Plasma Optical Emission Spectrometry in three sediment cores to explore stratigraphic distributions of metals in the lake deposits. High amounts of Pb and Zn in the core taken near the Polochic Delta suggest that galena and sphalerite mining increased Pb and Zn delivery to Lake Izabal between ~1945 and 1965 CE. An up-core Ni increase in the core taken near a different mine on the north shore of Lake Izabal suggests that recent nickel mining operations led to an increase in Ni concentrations in the local sediments, but amounts in the other cores indicate that Ni is not widely distributed throughout the lake. Sediment cores from Lake Izabal are reliable recorders of heavy metal input to the lake, and were measured to establish background metal levels, which would otherwise be unavailable. Concentrations of Pb, Zn, and Ni in older, pre-20th-century Lake Izabal sediments reflect input from natural erosion of bedrock. Our results provide previously unavailable estimates of background metal concentrations in Lake Izabal before the onset of mining. These results are necessary for future monitoring related to mining contamination of the lake ecosystem.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring , Geologic Sediments , Guatemala , Lakes , Lead , Nickel , Zinc
4.
PLoS One ; 14(12): e0226273, 2019.
Article in English | MEDLINE | ID: mdl-31834911

ABSTRACT

Recent studies have shown that sediments of temperate and tropical lakes are sinks for organic carbon (OC), but little is known about OC burial in subtropical lakes. There are questions regarding the ability of subtropical lakes to store OC, given their relatively warmwater temperatures, lack of ice cover, frequent water-column mixing, and labile carbon forms. We used 210Pb-dated sediment cores from 11 shallow Florida (USA) lakes to estimate OC burial, i.e. net OC storage, over the last ~100 years. Shallow Florida water bodies average ~30% OC content in their sediments and displayed rates of net OC accumulation (63-177 g C m-2 a-1) that are similar to natural temperate lakes, but lower than temperate agricultural impoundments. We considered the influence of lake morphometry on OC storage in our study lakes, but did not observe an inverse relationship between lake size and OC burial rate, as has been seen in some temperate lake districts. We did, however, find an inverse relation between mean water depth and OC sequestration. Despite recent cultural eutrophication and the associated shift from macrophyte to phytoplankton dominance in the Florida study lakes, overall OC burial rate increased relative to historic (pre-1950 AD) values. Lakes cover >9000 km2 of the Florida landscape, suggesting that OC burial in sediments amounts to as much as 1.6 Mt a-1. The high rate of OC burial in Florida lake sediments indicates that subtropical lakes are important for carbon sequestration and should be included in models of global carbon cycling.


Subject(s)
Carbon Cycle , Carbon Sequestration , Geologic Sediments/analysis , Lead Radioisotopes/analysis , Florida , Lakes
5.
Sci Total Environ ; 581-582: 697-704, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28082055

ABSTRACT

Marine sediments at many locations in the world are contaminated with a wide range of persistent organic pollutants. The Palos Verdes Shelf (PVS) is located in the ocean off the coast of Los Angeles, California and has been listed as a Superfund site by the US EPA since 1997, because of heavy contamination of DDTs and PCBs. However, little is known about the historical trend in the deposition of DDTs as a result of decades-long discharge of wastewater effluents. In this study, sediment cores were taken from the PVS site and determined for DDT and its metabolites including DDE and DDD (denoted as DDTs). Individual DDTs were found in the majority (95%) of the samples analyzed. The highest ∑DDT concentrations were found in three cores along the 60-meter isobath with geometric means of 31300, 7490, and 5010ng/gdw and medians of 82400, 17300, and 5200ng/g dw, respectively. Among DDT congeners, p,p'-DDE, o,p'-DDE and p,p'-DDD were predominant, contributing to approximately 54%, 27%, and 14% of the ΣDDTs in sediment. The vertical profiles of concentrations of contaminants in the sediment cores were examined. For most of the cores, a steady increase in the concentrations of DDTs during 1940s to 1980s was observed, while the concentrations declined gradually toward the surficial layers. On the basis of the mass flux of DDTs calculated and the area of the PVS Superfund site, we estimated the total deposition amount of DDTs in sediment and the deposition amount of ΣDDTs in this region during 1947-1971 was 132 tons, which was fairly close to what was reported in earlier studies for industrial wastewater discharge in the PVS site (870-1450tons). Our findings suggest that the elevated levels of DDTs in sediment from the PVS site are linked to the discharge of these contaminants between the 1940s-1980s.

6.
PLoS One ; 11(2): e0149573, 2016.
Article in English | MEDLINE | ID: mdl-26886350

ABSTRACT

Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest) aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health.


Subject(s)
Dust/analysis , Colorado , Droughts , Elements , Geography , Geologic Sediments/chemistry , Lakes , Models, Theoretical , Particle Size , Radiometry , Southwestern United States , Time Factors
7.
PLoS One ; 11(1): e0147331, 2016.
Article in English | MEDLINE | ID: mdl-26789518

ABSTRACT

We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used (210)Pb and (14)C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50-100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century.


Subject(s)
Carbon Radioisotopes/analysis , Eutrophication , Geologic Sediments/analysis , Lead Radioisotopes/analysis , Phosphorus/analysis , Environmental Monitoring , Florida , Lakes
8.
J Hum Evol ; 64(3): 216-24, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23415414

ABSTRACT

Traditionally, thick enamel has often been used to infer durophagy (i.e., hard nut and seed consumption) in extinct hominins. These inferences are based on the hypothesis that thick enamel is primarily an adaptation to prevent tooth fracture or chipping resulting from high-stress loads produced during the mastication of large hard foods. An alternative view argues that thick enamel may aid in maintaining tooth function in the face of gradual dental wear from grit, phytoliths and acid, which may be found in foods of widely varying hardness. We use estimates of primate dietary abrasiveness and recorded lifespan to test the hypothesis that enamel thickness is selectively responsive to lifetime dental wear resistance. We use data from the literature to relate enamel thickness to measures of dietary abrasiveness, diet profiles, and longevity for 17 primate species and performed linear regression using several combinations of these variables. We found a positive association between lifetime dietary wear and enamel thickness, suggesting that thick molar enamel in primates may have evolved as a means to resist wear apart from selection to resist tooth fracture. Assuming our estimates of lifetime dietary wear are accurate, we caution against ascribing thick enamel solely to the presence of hard-object feeding in paleoanthropological contexts without also considering primate lifespan and other aspects of feeding ecology.


Subject(s)
Biological Evolution , Dental Enamel/anatomy & histology , Dental Enamel/pathology , Tooth Wear/pathology , Animals , Anthropology, Physical , Feeding Behavior , Hardness , Linear Models , Primates
9.
Proc Natl Acad Sci U S A ; 109(4): 1046-51, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22215582

ABSTRACT

Angkor (Cambodia) was the seat of the Khmer Empire from the 9th to 15th century AD. The site is noted for its monumental architecture and complex hydro-engineering systems, comprised of canals, moats, embankments, and large reservoirs, known as barays. We infer a 1,000-y, (14)C-dated paleoenvironmental record from study of an approximately 2-m sediment core taken in the largest Khmer reservoir, the West Baray. The baray was utilized and managed from the time of construction in the early 11th century, through the 13th century. During that time, the West Baray received relatively high rates of detrital input. In the 14th century, linear sedimentation rates diminished by an order of magnitude, yielding a condensed section that correlates temporally with episodes of regional monsoon failure during the late 14th and early 15th century, recorded in tree ring records from Vietnam. Our results demonstrate that changes in the water management system were associated with the decline of the Angkorian kingdom during that period. By the 17th century, the West Baray again functioned as a limnetic system. Ecologic and sedimentologic changes over the last millennium, detected in the baray deposits, are attributed to shifts in regional-scale Khmer water management, evolving land use practices in the catchment, and regional climate change.


Subject(s)
Climate , Environment , Geologic Sediments/analysis , Cambodia , Carbon Isotopes/analysis , History, 15th Century , History, 17th Century , History, Medieval
10.
Ambio ; 34(3): 192-8, 2005 May.
Article in English | MEDLINE | ID: mdl-16042276

ABSTRACT

Lake Apopka is a shallow, hypereutrophic lake in north-central Florida that experienced an abrupt shift in primary producer community structure (PPCS) in 1947. The PPCS shift was so abrupt anecdotal accounts report that dominant, submersed aquatic vegetation was uprooted by a hurricane in 1947 and replaced by phytoplankton within weeks. Here we propose two hypotheses to explain the sudden shift to phytoplankton. First, hydrologic modification of the drainage basin in the late 1800s lowered the lake level ca. 1.0 m, allowing the ecosystem to accommodate moderate, anthropogenic nutrient enrichment through enhanced production in the macrophyte community. Second, additional hydrologic changes and large-scale agricultural development of floodplain wetlands began in 1942 and altered the pattern and scale of phosphorus loading to the lake that triggered the rapid shift to phytoplankton dominance in 1947. Historic land-use changes and paleolimnological data on biological responses to nutrient loading support these hypotheses.


Subject(s)
Eutrophication , Phytoplankton/growth & development , Agriculture , Disasters , Ecosystem , Florida , Phosphorus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...