Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(9): 4525-4533, 2018 May.
Article in English | MEDLINE | ID: mdl-29760893

ABSTRACT

Polyandry, where multiple mating by females results in the temporal and spatial overlap of ejaculates from two or more males, is taxonomically widespread and occurs in varying frequencies within and among species. In decapods (crabs, lobsters, crayfish, and prawns), rates of polyandry are likely to be variable, but the extent to which patterns of multiple paternity reflect multiple mating, and thus are shaped by postmating processes that bias fertilization toward one or a subset of mated males, is unclear. Here, we use microsatellite markers to examine the frequency of multiple mating (the presence of spermatophores from two or more males) and patterns of paternity in wild populations of western rock lobster (Panulirus cygnus). Our data confirm that >45% of females had attached spermatophores arising from at least two males (i.e., confirming polyandry), but we found very limited evidence for multiple paternity; among 24 clutches sampled in this study, only two arose from fertilizations by two or more males. Single inferred paternal genotypes accounted for all remaining progeny genotypes in each clutch, including several instances when the mother had been shown to mate with two or more males. These findings highlight the need for further work to understand whether polyandry is adaptive and to uncover the mechanisms underlying postmating paternity biases in this system.

2.
Ecol Evol ; 6(18): 6578-6585, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27777731

ABSTRACT

Oceans are a huge sink for the increased heat associated with anthropogenic climate change, and it is vital to understand the heat tolerance of marine organisms at all life stages to accurately predict species' responses. In broadcast spawning marine invertebrates, reproduction is a vulnerable process in which sperm and eggs are released directly into the open water. Gametes are then exposed to fluctuating environmental conditions that may impact their fertilizing capacity. Using the broadcast spawning Mediterranean mussel, Mytilus galloprovincialis, as a model species, we performed blocks of factorial mating crosses to assess the variance in fertilization rates among individuals under both ambient and elevated temperatures. Overall, we found a small, but significant decline in fertilization rates with elevated temperatures. However, there was substantial plasticity in responses, with particular mussels having increased fertilization under elevated temperatures, although the majority showed decreased fertilization rates. Our results suggest possible future reproductive costs to ocean warming in M. galloprovincialis, although it is also possible that genetic variation for thermal sensitivity may allow for adaptation to changing environmental conditions.

3.
PLoS One ; 11(1): e0146167, 2016.
Article in English | MEDLINE | ID: mdl-26784921

ABSTRACT

The fragmentation of habitats by roads and other artificial linear structures can have a profound effect on the movement of arboreal species due to their strong fidelity to canopies. Here, we used 12 microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a major road and a narrow artificial waterway on a population of the endangered western ringtail possum (Pseudocheirus occidentalis) in Busselton, Western Australia. Using spatial autocorrelation analysis, we found positive genetic structure in continuous habitat over distances up to 600 m. These patterns are consistent with the sedentary nature of P. occidentalis and highlight their vulnerability to the effects of habitat fragmentation. Pairwise relatedness values and Bayesian cluster analysis also revealed significant genetic divergences across an artificial waterway, suggesting that it was a barrier to gene flow. By contrast, no genetic divergences were detected across the major road. While studies often focus on roads when assessing the effects of artificial linear structures on wildlife, this study provides an example of an often overlooked artificial linear structure other than a road that has a significant impact on wildlife dispersal leading to genetic subdivision.


Subject(s)
Ecosystem , Phalangeridae/genetics , Polymorphism, Genetic , Animals , Gene Flow , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...