Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Nucleic Acids Res ; 52(D1): D1082-D1088, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953330

ABSTRACT

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide. It provides annotation data on thousands of genome assemblies, ranging from human to SARS-CoV2. This year, we have introduced new data from the Human Pangenome Reference Consortium and on viral genomes including SARS-CoV2. We have added 1,200 new genomes to our GenArk genome system, increasing the overall diversity of our genomic representation. We have added support for nine new user-contributed track hubs to our public hub system. Additionally, we have released 29 new tracks on the human genome and 11 new tracks on the mouse genome. Collectively, these new features expand both the breadth and depth of the genomic knowledge that we share publicly with users worldwide.


Subject(s)
Databases, Genetic , Genomics , RNA, Viral , Animals , Humans , Mice , Genome, Human , Genome, Viral , Internet , Molecular Sequence Annotation , Software
2.
Genome Biol ; 24(1): 217, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784172

ABSTRACT

Interactive graphical genome browsers are essential tools in genomics, but they do not contain all the recent genome assemblies. We create Genome Archive (GenArk) collection of UCSC Genome Browsers from NCBI assemblies. Built on our established track hub system, this enables fast visualization of annotations. Assemblies come with gene models, repeat masks, BLAT, and in silico PCR. Users can add annotations via track hubs and custom tracks. We can bulk-import third-party resources, demonstrated with TOGA and Ensembl gene models for hundreds of assemblies.Three thousand two hundred sixty-nine GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be searched for on the Genome Browser gateway page.


Subject(s)
Genome , Software , Genomics , Archives , Nucleic Acid Amplification Techniques , Databases, Genetic , Internet
3.
Res Sq ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066427

ABSTRACT

Interactive graphical genome browsers are essential tools for biologists working with DNA sequences. Although tens of thousands of new genome assemblies have become available over the last decade, accessibility is limited by the work involved in manually creating browsers and curating annotations. The results can push the limits of data storage infrastructure. To facilitate managing this increasing number of genome assemblies, we created the Genome Archive (GenArk) collection of UCSC Genome Browsers from assemblies hosted at NCBI(1). Built on our established assembly hub system, this collection enables fast, on-demand visualization of chromosome regions without requiring a database server. Available annotations include gene models, some mapped through whole-genome alignments, repeat masks, GC content, and others. We also modified our popular BLAT(2) aligner and in-silico PCR to support a large number of genomes using limited RAM. Users can upload additional annotations themselves via track hubs(3) and custom tracks. We can import more annotations in bulk from third-party resources, demonstrated here with TOGA(4) gene models. 2,430 GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be found by searching on the main UCSC gateway page. We will continue to add human high-quality assemblies and for other organisms, we are looking forward to receiving requests from the research community for ever more browsers and whole-genome alignments via http://genome.ucsc.edu/assemblyRequest.html.

4.
Nucleic Acids Res ; 51(D1): D1188-D1195, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420891

ABSTRACT

The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year. This year has seen an emphasis in clinical data, with new tracks and an expanded Recommended Track Sets feature on hg38 as well as the addition of a single cell track group. SARS-CoV-2 continues to remain a focus, with regular annotation updates to the browser and continued curation of our phylogenetic sequence placing tool, hgPhyloPlace, whose tree has now reached over 12M sequences. Our GenArk resource has also grown, offering over 2500 hubs and a system for users to request any absent assemblies. We have expanded our bigBarChart display type and created new ways to visualize data via bigRmsk and dynseq display. Displaying custom annotations is now easier due to our chromAlias system which eliminates the requirement for renaming sequence names to the UCSC standard. Users involved in data generation may also be interested in our new tools and trackDb settings which facilitate the creation and display of their custom annotations.


Subject(s)
Databases, Genetic , Genomics , Humans , COVID-19/epidemiology , COVID-19/genetics , Genomics/methods , Internet , Phylogeny , SARS-CoV-2/genetics , Software , Web Browser
5.
Hum Mutat ; 43(8): 998-1011, 2022 08.
Article in English | MEDLINE | ID: mdl-35088925

ABSTRACT

The UCSC Genome Browser has been an important tool for genomics and clinical genetics since the sequence of the human genome was first released in 2000. As it has grown in scope to display more types of data it has also grown more complicated. The data, which are dispersed at many locations worldwide, are collected into one view on the Browser, where the graphical interface presents the data in one location. This supports the expertise of the researcher to interpret variants in the genome. Because the analysis of single nucleotide variants and copy number variants require interpretation of data at very different genomic scales, different data resources are required. We present here several Recommended Track Sets designed to facilitate the interpretation of variants in the clinic, offering quick access to datasets relevant to the appropriate scale.


Subject(s)
Databases, Genetic , Software , DNA Copy Number Variations , Genome, Human/genetics , Genomics , Humans , Internet
6.
Nucleic Acids Res ; 50(D1): D1115-D1122, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718705

ABSTRACT

The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations. The website provides integrated tools for visualizing, comparing, analyzing, and sharing both publicly available and user-generated genomic datasets. Data highlights this year include a collection of easily accessible public hub assemblies on new organisms, now featuring BLAT alignment and PCR capabilities, and new and updated clinical tracks (gnomAD, DECIPHER, CADD, REVEL). We introduced a new Track Sets feature and enhanced variant displays to aid in the interpretation of clinical data. We also added a tool to rapidly place new SARS-CoV-2 genomes in a global phylogenetic tree enabling researchers to view the context of emerging mutations in our SARS-CoV-2 Genome Browser. Other new software focuses on usability features, including more informative mouseover displays and new fonts.


Subject(s)
Databases, Genetic , Web Browser , Animals , Genome, Human , Humans , Phylogeny , Polymerase Chain Reaction , SARS-CoV-2/genetics , User-Computer Interface , Exome Sequencing
7.
Bioinformatics ; 37(23): 4578-4580, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34244710

ABSTRACT

SUMMARY: As the use of single-cell technologies has grown, so has the need for tools to explore these large, complicated datasets. The UCSC Cell Browser is a tool that allows scientists to visualize gene expression and metadata annotation distribution throughout a single-cell dataset or multiple datasets. AVAILABILITY AND IMPLEMENTATION: We provide the UCSC Cell Browser as a free website where scientists can explore a growing collection of single-cell datasets and a freely available python package for scientists to create stable, self-contained visualizations for their own single-cell datasets. Learn more at https://cells.ucsc.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Databases, Genetic , Metadata
8.
Nucleic Acids Res ; 49(D1): D1046-D1057, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33221922

ABSTRACT

For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community. As the field of genomics grows and more data become available, new modes of display are required to accommodate new technologies. New features released this past year include a Hi-C heatmap display, a phased family trio display for VCF files, and various track visualization improvements. Striving to keep data up-to-date, new updates to gene annotations include GENCODE Genes, NCBI RefSeq Genes, and Ensembl Genes. New data tracks added for human and mouse genomes include the ENCODE registry of candidate cis-regulatory elements, promoters from the Eukaryotic Promoter Database, and NCBI RefSeq Select and Matched Annotation from NCBI and EMBL-EBI (MANE). Within weeks of learning about the outbreak of coronavirus, UCSC released a genome browser, with detailed annotation tracks, for the SARS-CoV-2 RNA reference assembly.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genome/genetics , Genomics/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Data Curation/methods , Epidemics , Humans , Internet , Mice , Molecular Sequence Annotation/methods , SARS-CoV-2/physiology , Software
10.
Mob DNA ; 11: 13, 2020.
Article in English | MEDLINE | ID: mdl-32266012

ABSTRACT

BACKGROUND: Nearly half the human genome consists of repeat elements, most of which are retrotransposons, and many of which play important biological roles. However repeat elements pose several unique challenges to current bioinformatic analyses and visualization tools, as short repeat sequences can map to multiple genomic loci resulting in their misclassification and misinterpretation. In fact, sequence data mapping to repeat elements are often discarded from analysis pipelines. Therefore, there is a continued need for standardized tools and techniques to interpret genomic data of repeats. RESULTS: We present the UCSC Repeat Browser, which consists of a complete set of human repeat reference sequences derived from annotations made by the commonly used program RepeatMasker. The UCSC Repeat Browser also provides an alignment from the human genome to these references, uses it to map the standard human genome annotation tracks, and presents all of them as a comprehensive interface to facilitate work with repetitive elements. It also provides processed tracks of multiple publicly available datasets of particular interest to the repeat community, including ChIP-seq datasets for KRAB Zinc Finger Proteins (KZNFs) - a family of proteins known to bind and repress certain classes of repeats. We used the UCSC Repeat Browser in combination with these datasets, as well as RepeatMasker annotations in several non-human primates, to trace the independent trajectories of species-specific evolutionary battles between LINE 1 retroelements and their repressors. Furthermore, we document at https://repeatbrowser.ucsc.edu how researchers can map their own human genome annotations to these reference repeat sequences. CONCLUSIONS: The UCSC Repeat Browser allows easy and intuitive visualization of genomic data on consensus repeat elements, circumventing the problem of multi-mapping, in which sequencing reads of repeat elements map to multiple locations on the human genome. By developing a reference consensus, multiple datasets and annotation tracks can easily be overlaid to reveal complex evolutionary histories of repeats in a single interactive window. Specifically, we use this approach to retrace the history of several primate specific LINE-1 families across apes, and discover several species-specific routes of evolution that correlate with the emergence and binding of KZNFs.

11.
Nucleic Acids Res ; 48(D1): D756-D761, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691824

ABSTRACT

The University of California Santa Cruz Genome Browser website (https://genome.ucsc.edu) enters its 20th year of providing high-quality genomics data visualization and genome annotations to the research community. In the past year, we have added a new option to our web BLAT tool that allows search against all genomes, a single-cell expression viewer (https://cells.ucsc.edu), a 'lollipop' plot display mode for high-density variation data, a RESTful API for data extraction and a custom-track backup feature. New datasets include Tabula Muris single-cell expression data, GeneHancer regulatory annotations, The Cancer Genome Atlas Pan-Cancer variants, Genome Reference Consortium Patch sequences, new ENCODE transcription factor binding site peaks and clusters, the Database of Genomic Variants Gold Standard Variants, Genomenon Mastermind variants and three new multi-species alignment tracks.


Subject(s)
Databases, Genetic , Genome, Human , Software , Genomics , Humans , Internet
12.
Nucleic Acids Res ; 47(D1): D853-D858, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407534

ABSTRACT

The UCSC Genome Browser (https://genome.ucsc.edu) is a graphical viewer for exploring genome annotations. For almost two decades, the Browser has provided visualization tools for genetics and molecular biology and continues to add new data and features. This year, we added a new tool that lets users interactively arrange existing graphing tracks into new groups. Other software additions include new formats for chromosome interactions, a ChIP-Seq peak display for track hubs and improved support for HGVS. On the annotation side, we have added gnomAD, TCGA expression, RefSeq Functional elements, GTEx eQTLs, CRISPR Guides, SNPpedia and created a 30-way primate alignment on the human genome. Nine assemblies now have RefSeq-mapped gene models.


Subject(s)
Databases, Genetic , Genome/genetics , Genomics , Software , Animals , Chromosome Mapping , Genome, Human/genetics , Humans , Molecular Sequence Annotation , Web Browser
13.
Nucleic Acids Res ; 46(D1): D762-D769, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29106570

ABSTRACT

The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis-12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


Subject(s)
Databases, Genetic , Genome , Web Browser , CRISPR-Cas Systems , Data Display , Gene Regulatory Networks , Genome, Human , Humans , Molecular Sequence Annotation , Terminology as Topic , User-Computer Interface
14.
Science ; 358(6368): 1318-1323, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29217575

ABSTRACT

Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.


Subject(s)
Cerebral Cortex/growth & development , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Telencephalon/growth & development , Cerebral Cortex/anatomy & histology , Cerebral Cortex/cytology , Humans , Neuroglia/physiology , Neurons , Telencephalon/anatomy & histology , Telencephalon/cytology
16.
Nucleic Acids Res ; 45(D1): D626-D634, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899642

ABSTRACT

Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.


Subject(s)
Databases, Genetic , Search Engine , Web Browser , Animals , Computational Biology/methods , Genome , Genomics/methods , Humans , Molecular Sequence Annotation , Software
17.
Bioinformatics ; 32(9): 1430-2, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26740527

ABSTRACT

UNLABELLED: Two new tools on the UCSC Genome Browser web site provide improved ways of combining information from multiple datasets, optionally including the user's own custom track data and/or data from track hubs. The Data Integrator combines columns from multiple data tracks, showing all items from the first track along with overlapping items from the other tracks. The Variant Annotation Integrator is tailored to adding functional annotations to variant calls; it offers a more restricted set of underlying data tracks but adds predictions of each variant's consequences for any overlapping or nearby gene transcript. When available, it optionally adds additional annotations including effect prediction scores from dbNSFP for missense mutations, ENCODE regulatory summary tracks and conservation scores. AVAILABILITY AND IMPLEMENTATION: The web tools are freely available at http://genome.ucsc.edu/ and the underlying database is available for download at http://hgdownload.cse.ucsc.edu/ The software (written in C and Javascript) is available from https://genome-store.ucsc.edu/ and is freely available for academic and non-profit usage; commercial users must obtain a license. CONTACT: angie@soe.ucsc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Software , Animals , Databases, Genetic , Genomics , Humans , Internet
18.
Nucleic Acids Res ; 44(D1): D717-25, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26590259

ABSTRACT

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.


Subject(s)
Databases, Genetic , Genomics , Animals , Disease/genetics , Genes , Genome , Humans , Mice , Molecular Sequence Annotation , Software
19.
J Am Med Inform Assoc ; 22(6): 1143-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26174866

ABSTRACT

The world's genomics data will never be stored in a single repository - rather, it will be distributed among many sites in many countries. No one site will have enough data to explain genotype to phenotype relationships in rare diseases; therefore, sites must share data. To accomplish this, the genetics community must forge common standards and protocols to make sharing and computing data among many sites a seamless activity. Through the Global Alliance for Genomics and Health, we are pioneering the development of shared application programming interfaces (APIs) to connect the world's genome repositories. In parallel, we are developing an open source software stack (ADAM) that uses these APIs. This combination will create a cohesive genome informatics ecosystem. Using containers, we are facilitating the deployment of this software in a diverse array of environments. Through benchmarking efforts and big data driver projects, we are ensuring ADAM's performance and utility.


Subject(s)
Datasets as Topic , Genomics , Translational Research, Biomedical , Computational Biology , Humans , Knowledge Bases , National Institutes of Health (U.S.) , United States
20.
Nucleic Acids Res ; 43(20): e133, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26163063

ABSTRACT

The human reference assembly remains incomplete due to the underrepresentation of repeat-rich sequences that are found within centromeric regions and acrocentric short arms. Although these sequences are marginally represented in the assembly, they are often fully represented in whole-genome short-read datasets and contribute to inappropriate alignments and high read-depth signals that localize to a small number of assembled homologous regions. As a consequence, these regions often provide artifactual peak calls that confound hypothesis testing and large-scale genomic studies. To address this problem, we have constructed mapping targets that represent roughly 8% of the human genome generally omitted from the human reference assembly. By integrating these data into standard mapping and peak-calling pipelines we demonstrate a 10-fold reduction in signals in regions common to the blacklisted region and identify a comprehensive set of regions that exhibit mapping sensitivity with the presence of the repeat-rich targets.


Subject(s)
Artifacts , Genome, Human , Genomics/methods , Sequence Alignment/methods , DNA/chemistry , Databases, Nucleic Acid , Humans , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...